Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Genomics ; 113(3): 1325-1337, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33713821

RESUMO

The present study demonstrated a de novo correlation among fiber quality genes in multiple RIL populations including sGK9708 × 0-153, LMY22 × LY343 and Lumianyan28 × Xinluzao24. The current study was conducted to identify the major common QTLs including fiber length and strength, and to identify the co-expression networks of fiber length and strength QTLs harbored genes to target the hub genes. The RNA-seq data of sGK9708 × 0-153 population highlighted 50 and 48 candidate genes of fiber length and fiber strength QTLs. A total of 29 and 21 hub genes were identified in fiber length and strength co-expression network modules. The absolute values of correlation coefficient close to 1 resulted highly positive correlation among hub genes. Results also suggested that the gene correlation significantly influence the gene expression at different fiber development stages. These results might provide useful reference for further experiments in multiple RIL populations and suggest potential candidate genes for functional studies in cotton.


Assuntos
Fibra de Algodão , Locos de Características Quantitativas , Mapeamento Cromossômico , Gossypium/genética , Fenótipo
2.
J Med Genet ; 51(12): 797-805, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25293953

RESUMO

PURPOSE: To identify the genetic cause of autosomal-dominant pattern dystrophy (PD) of the retinal pigment epithelium (RPE) in two families. METHODS AND RESULTS: Two families with autosomal-dominant PD were identified. Eight members of family 1 (five affected) were subjected to whole-genome SNP genotyping; multipoint genome-wide linkage analysis identified 7 regions of potential linkage, and genotyping four additional individuals from family 1 resulted in a maximum logarithm of odds score of 2.09 observed across four chromosomal regions. Exome sequencing of two affected family 1 members identified 15 shared non-synonymous rare coding sequence variants within the linked regions; candidate genes were prioritised and further analysed. Sanger sequencing confirmed a novel heterozygous missense variant (E79K) in orthodenticle homeobox 2 (OTX2) that segregated with the disease phenotype. Family 2 with PD (two affected) harboured the same missense variant in OTX2. A shared haplotype of 19.68 cM encompassing OTX2 was identified between affected individuals in the two families. Within the two families, all except one affected demonstrated distinct 'patterns' at the macula. In vivo structural retinal imaging showed discrete areas of RPE-photoreceptor separation at the macula in all cases. Electroretinogram testing showed generalised photoreceptor degeneration in three cases. Mild developmental anomalies were observed, including optic nerve head dysplasia (four cases), microcornea (one case) and Rathke's cleft cyst (one case); pituitary hormone levels were normal. CONCLUSIONS: This is the first report implicating OTX2 to underlie PD. The retinal disease resembles conditional mice models that show slow photoreceptor degeneration secondary to loss of Otx2 function in the adult RPE.


Assuntos
Genes Dominantes , Mutação , Fatores de Transcrição Otx/genética , Distrofias Retinianas/genética , Distrofias Retinianas/patologia , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Adolescente , Adulto , Sequência de Aminoácidos , Criança , Pré-Escolar , Biologia Computacional , Análise Mutacional de DNA , Exoma , Feminino , Ligação Genética , Genótipo , Humanos , Masculino , Repetições de Microssatélites , Pessoa de Meia-Idade , Modelos Moleculares , Dados de Sequência Molecular , Fatores de Transcrição Otx/química , Linhagem , Polimorfismo de Nucleotídeo Único , Conformação Proteica , Distrofias Retinianas/diagnóstico , Alinhamento de Sequência , Testes Visuais , Adulto Jovem
3.
Biol Res ; 48: 14, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25889424

RESUMO

BACKGROUND: Insects have developed resistance against Bt-transgenic plants. A multi-barrier defense system to weaken their resistance development is now necessary. One such approach is to use fusion protein genes to increase resistance in plants by introducing more Bt genes in combination. The locating the target protein at the point of insect attack will be more effective. It will not mean that the non-green parts of the plants are free of toxic proteins, but it will inflict more damage on the insects because they are at maximum activity in the green parts of plants. RESULTS: Successful cloning was achieved by the amplification of Cry2A, Cry1Ac, and a transit peptide. The appropriate polymerase chain reaction amplification and digested products confirmed that Cry1Ac and Cry2A were successfully cloned in the correct orientation. The appearance of a blue color in sections of infiltrated leaves after 72 hours confirmed the successful expression of the construct in the plant expression system. The overall transformation efficiency was calculated to be 0.7%. The amplification of Cry1Ac-Cry2A and Tp2 showed the successful integration of target genes into the genome of cotton plants. A maximum of 0.673 µg/g tissue of Cry1Ac and 0.568 µg/g tissue of Cry2A was observed in transgenic plants. We obtained 100% mortality in the target insect after 72 hours of feeding the 2nd instar larvae with transgenic plants. The appearance of a yellow color in transgenic cross sections, while absent in the control, through phase contrast microscopy indicated chloroplast localization of the target protein. CONCLUSION: Locating the target protein at the point of insect attack increases insect mortality when compared with that of other transgenic plants. The results of this study will also be of great value from a biosafety point of view.


Assuntos
Proteínas de Bactérias/genética , Cloroplastos/genética , Endotoxinas/genética , Gossypium/genética , Proteínas Hemolisinas/genética , Controle de Insetos/métodos , Lepidópteros , Proteínas Recombinantes de Fusão , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/análise , Cloroplastos/metabolismo , Clonagem Molecular , Primers do DNA , Endotoxinas/análise , Expressão Gênica/genética , Fusão Gênica , Proteínas Hemolisinas/análise , Imuno-Histoquímica , Resistência a Inseticidas/genética , Inseticidas , Larva , Microscopia de Contraste de Fase , Folhas de Planta/genética , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase , Transgenes/fisiologia
4.
Int J Biol Macromol ; 266(Pt 2): 131371, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38580013

RESUMO

Bacterial caseinolytic protease-chaperone complexes participate in the elimination of misfolded and aggregated protein substrates. The spirochete Leptospira interrogans possess a set of Clp-chaperones (ClpX, ClpA, and ClpC), which may associate functionally with two different isoforms of LinClpP (ClpP1 and ClpP2). The L. interrogans ClpC (LinClpC) belongs to class-I chaperone with two active ATPase domains separated by a middle domain. Using the size exclusion chromatography, ANS dye binding, and dynamic light scattering analysis, the LinClpC is suggested to undergo nucleotide-induced oligomerization. LinClpC associates with either pure LinClpP1 or LinClpP2 isoforms non-preferentially and with equal affinity. Regardless, pure LinClpP isoforms cannot constitute an active protease complex with LinClpC. Interestingly, the heterocomplex LinClpP1P2 in association with LinClpC forms a functional proteolytic machinery and degrade ß-casein or FITC-casein in an energy-independent manner. Adding either ATP or ATPγS further fosters the LinClpCP1P2 complex protease activity by nurturing the functional oligomerization of LinClpC. The antibiotic, acyldepsipeptides (ADEP1) display a higher activatory role on LinClpP1P2 protease activity than LinClpC. Altogether, this work illustrates an in-depth study of hetero-tetradecamer LinClpP1P2 association with its cognate ATPase and unveils a new insight into the structural reorganization of LinClpP1P2 in the presence of chaperone, LinClpC to gain protease activity.


Assuntos
Proteínas de Bactérias , Proteínas de Choque Térmico , Leptospira , Multimerização Proteica , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Endopeptidase Clp/metabolismo , Endopeptidase Clp/química , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Leptospira/metabolismo , Leptospira/enzimologia , Leptospira interrogans/enzimologia , Leptospira interrogans/metabolismo , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/química , Ligação Proteica , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/química , Proteólise
5.
Sci Rep ; 14(1): 11809, 2024 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782928

RESUMO

The development of genotypes that can tolerate high levels of salt is crucial for the efficient use of salt-affected land and for enhancing crop productivity worldwide. Therefore, incorporating salinity tolerance is a critical trait that crops must possess. Salt resistance is a complex character, controlled by multiple genes both physiologically and genetically. To examine the genetic foundation of salt tolerance, we assessed 16 F1 hybrids and their eight parental lines under normal and salt stress (15 dS/m) conditions. Under salt stress conditions significant reduction was observed for plant height (PH), bolls/plant (NBP), boll weight (BW), seed cotton yield (SCY), lint% (LP), fiber length (FL), fiber strength (FS), potassium to sodium ratio (K+/Na+), potassium contents (K+), total soluble proteins (TSP), carotenoids (Car) and chlorophyll contents. Furthermore, the mean values for hydrogen peroxide (H2O2), sodium contents (Na+), catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), and fiber fineness (FF) were increased under salt stress. Moderate to high heritability and genetic advancement was observed for NBP, BW, LP, SCY, K+/Na+, SOD, CAT, POD, Car, TSP, FL, and FS. Mean performance and multivariate analysis of 24 cotton genotypes based on various agro-physiological and biochemical parameters suggested that the genotypes FBS-Falcon, Barani-333, JSQ-White Hold, Ghauri, along with crosses FBS-FALCON × JSQ-White Hold, FBG-222 × FBG-333, FBG-222 × Barani-222, and Barani-333 × FBG-333 achieved the maximum values for K+/Na+, K+, TSP, POD, Chlb, CAT, Car, LP, FS, FL, PH, NBP, BW, and SCY under salt stress and declared as salt resistant genotypes. The above-mentioned genotypes also showed relatively higher expression levels of Ghi-ERF-2D.6 and Ghi-ERF-7A.6 at 15 dS/m and proved the role of these ERF genes in salt tolerance in cotton. These findings suggest that these genotypes have the potential for the development of salt-tolerant cotton varieties with desirable fiber quality traits.


Assuntos
Gossypium , Tolerância ao Sal , Gossypium/genética , Gossypium/metabolismo , Gossypium/fisiologia , Tolerância ao Sal/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genótipo , Potássio/metabolismo , Estresse Salino/genética , Fenótipo
6.
Plants (Basel) ; 12(23)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38068706

RESUMO

Cotton (Gossypium spp. L.) is a major origin of natural fiber, and is projected at 117 million bales worldwide for 2021/22. A variety of biotic and abiotic stresses have considerable negative impacts on cotton. The significantly decreased applications of chemical insecticidal sprays in the agro-ecosystem have greatly affected the biodiversity and dynamics of primary and secondary insects. Various control measures were taken around the globe to increase production costs. Temperature, drought, and salinity, and biotic stresses such as bacteria, viruses, fungi, nematodes, insects, and mites cause substantial losses to cotton crops. Here, we summarize a number of biotic and abiotic stresses upsetting Bt cotton crop with present and future biotechnology solution strategies that include a refuge strategy, multi-gene pyramiding, the release of sterile insects, seed mixing, RNAi, CRISPR/Cas9, biotic signaling, and the use of bioagents. Surveillance of insect resistance, monitoring of grower compliance, and implementation of remedial actions can lead to the sustainable use of cotton across the globe.

7.
Front Plant Sci ; 14: 1265700, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023925

RESUMO

This study aimed to investigate the impact of individual drought, heat, and combined drought and heat stress on twelve cotton genotypes, including eight tolerant and four susceptible genotypes. A field experiment was carried out by employing a randomized complete block split-plot design, with treatments (control, drought, heat, drought + heat), and cotton genotypes assigned to the main plots and sub-plots respectively. The results showed that the combined stress had a more severe impact on the yield and fiber quality of cotton genotypes compared to individual stresses. Among the studied genotypes, FB-Shaheen, FH-207, MNH-886, and White Gold exhibited superior performance in regard to agronomic and fiber quality characters under combined stress environments. Physiological parameters, including transpiration rate, stomatal conductance, relative water contents, and photosynthetic rate, were significantly reduced under combined stress. However, specific genotypes, MNH-886, FH-207, White Gold, and FB-Shaheen, demonstrated better maintenance of these parameters, indicating their enhanced tolerance to the combined stress. Furthermore, the accumulation of reactive oxygen species was more pronounced under combined stress compared to individual stressors. Tolerant genotypes showed lower levels of H2O2 and MDA accumulation, while susceptible genotypes exhibited higher levels of oxidative damage. Antioxidant enzyme activities, such as superoxide dismutase, peroxidase, and catalase, increased under combined stress, with tolerant genotypes displaying higher enzyme activities. Conversely, susceptible genotypes (AA-703, KZ 191, IR-6, and S-15) demonstrated lower increases in enzymatic activities under combined stress conditions. Biochemical traits, including proline, total phenolic content, flavonoids, and ascorbic acid, exhibited higher levels in resistant genotypes under combined stress, while sensitive genotypes displayed decreased levels of these traits. Additionally, chlorophyll a & b, and carotenoid levels were notably decreased under combined stress, with tolerant genotypes experiencing a lesser decrease compared to susceptible genotypes.

8.
Nanomaterials (Basel) ; 12(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35630967

RESUMO

In recent times, the loss of useful energy and solutions to those energy challenges have a wide scope in different areas of engineering. This work focuses on entropy analysis for unsteady viscoelastic fluids. The momentum boundary layer and thermal boundary layer are described under the effects of a magnetic field in the absence of an induced magnetic field. The study of a fractional model of Maxwell nanofluid by partial differential equation using Caputo time differential operator can well address the memory effect. Using transformations, the fractional ordered partial differential equations (PDEs) are transfigured into dimensionless PDEs. Numerical results for fractional Maxwell nanofluids flow and heat transfer are driven graphically. The Bejan number is obtained following the suggested transformation of dimensionless quantities like entropy generation. A mathematical model of entropy generation, Bejan number, Nusselt number and skin friction are developed for nanofluids. Effects of different physical parameters like Brickman number, Prandtl number, Grashof number and Hartmann number are illustrated graphically by MAPLE. Results depict that the addition of nanoparticles in base-fluid controls the entropy generation that enhances the thermal conductivity and application of magnetic field has strong effects on the heat transfer of fractional Maxwell fluids. An increasing behavior in entropy generation is noticed in the presence of source term and thermal radiation parameter.

9.
Sci Rep ; 12(1): 10878, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35760806

RESUMO

Transgenic technology played a crucial role in developing insect-resistant plants resulting in the reduced application of pesticides. This article reports the expression of two cry proteins (Cry3Bb1 and Cry3) in cotton for enhanced resistance against chewing insect pests. The aforementioned genes were synthetically developed and were cloned under appropriate regulatory sequences followed by transformation into Eagle-2 genotype (Gossypium hirsutum) of cotton through shoot apex-cut Agro-infiltration. The transgene integration was validated by polymerase chain reaction using primers flanking the aforementioned cry genes. Transgene expression was assessed by qRT-PCR using GADPH as a reference gene. The relative fold expression analyses revealed the highest expression of the transgene(s) in M1 plants, which is a 4.5-fold expression (Cry3 + Cry3Bb1) followed by M3 (fold expression, 3.0) (Cry3Bb1) and M2 (fold expression, 2.5) (Cry3) transformants of cotton. The confirmed transgenic plants were exposed to insect pests, pink bollworm (Pectinophora gossypiella), and army bollworm (Helicoverpa armigera). Bioassay results revealed that 60% mortality was observed against pink bollworm, and 75% mortality was observed against army bollworm in transgenic plants containing both Cry3Bb1 and Cry3 genes (M1 transgenic plants). In M2 transgenic plants containing only the Cry3Bb1 gene, the mortality was observed to be 40% in the pink bollworm population, whereas 45% mortality was observed in the army bollworm population. In the case of M3 transgenic plants containing single gene-Cry3, the mortality was 20% in the pink bollworm population, whereas 30% mortality was observed in the army bollworm population. Almost no mortality was observed in non-transgenic Eagle-2 control plants. Hence, the developed cotton transformants have improved resistance against chewing insect pests.


Assuntos
Gossypium , Mariposas , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Endotoxinas/genética , Endotoxinas/metabolismo , Gossypium/genética , Gossypium/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Resistência a Inseticidas/genética , Mariposas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
10.
Viruses ; 14(11)2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36423137

RESUMO

Newcastle disease (ND) is a highly contagious viral disease of poultry causing significant economic losses worldwide. Vaccination is considered the most reliable approach to curb the economic menace that is ND, but the thermolabile nature of Newcastle disease virus (NDV) vaccination poses a significant threat to its protective efficacy. This study aimed to profile the thermostability of NDV isolates from duck (As/Km/19/44) and parrot (As/WB/19/91) and evaluate their immunogenic potential in chicks. Fusion protein cleavage site (FPCS) and phylogenetic analysis demonstrated the lentogenic nature of both the isolates/strains and classified them as class II genotype II NDV. The characterized NDV isolates were adapted in specific-pathogen-free (SPF) chicks by serially passaging. Biological pathogenicity assessment of chicken-adapted As/Km/19/44 (PSD44C) and As/WB/19/91 (PSP91C) revealed both the isolates to be avirulent with a mean death time (MDT) of more than 90 h and an intracerebral pathogenicity index (ICPI) ranging from 0.2 to 0.4. Both of the NDV isolates displayed varied thermostability profiles. PSD44C was the most thermostable strain as compared to PSP91C and the commercially available LaSota vaccine strain. The immunogenicity of PSD44C and LaSota was significantly higher than PSP91C. Based on these results, it is concluded that NDV isolate PSD44C is more thermostable and immunogenic when administered intraocularly without any adverse effects. Therefore, PSD44C is suitable for further research and vaccine development.


Assuntos
Doença de Newcastle , Papagaios , Animais , Patos , Galinhas , Filogenia , Vírus da Doença de Newcastle/genética , Doença de Newcastle/prevenção & controle , Genótipo , Paramyxoviridae
11.
Front Plant Sci ; 12: 777794, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804108

RESUMO

Molecular interventions have helped to explore the genes involved in fiber length, fiber strength, and other quality parameters with improved characteristics, particularly in cotton. The current study is an extension and functional validation of previous findings that Gh_A07G1537 influences fiber length in cotton using a chromosomal segment substitution line MBI7747 through RNA-seq data. The recombinant Gh_A07G1537 derived from the MBI7747 line was over-expressed in CCRI24, a genotype with a low profile of fiber quality parameters. Putative transformants were selected on MS medium containing hygromycin (25mg/ml), acclimatized, and shifted to a greenhouse for further growth and proliferation. Transgene integration was validated through PCR and Southern Blot analysis. Stable integration of the transgene (ΔGh_A07G1537) was validated by tracking its expression in different generations (T0, T1, and T2) of transformed cotton plants. It was found to be 2.97-, 2.86-, and 2.92-folds higher expression in T0, T1, and T2 plants, respectively, of transgenic compared with non-transgenic cotton plants. Fiber quality parameters were also observed to be improved in the engineered cotton line. Genetic modifications of Gh_A07G1537 support the improvement in fiber quality parameters and should be appreciated for the textile industry.

12.
Front Plant Sci ; 12: 727835, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095940

RESUMO

The ever-changing global environment currently includes an increasing ambient temperature that can be a devastating stress for organisms. Plants, being sessile, are adversely affected by heat stress in their physiology, development, growth, and ultimately yield. Since little is known about the response of biochemical traits to high-temperature ambiance, we evaluated eight parental lines (five lines and three testers) and their 15 F1 hybrids under normal and high-temperature stress to assess the impact of these conditions over 2 consecutive years. The research was performed under a triplicate randomized complete block design including a split-plot arrangement. Data were recorded for agronomic, biochemical, and fiber quality traits. Mean values of agronomic traits were significantly reduced under heat stress conditions, while hydrogen peroxide, peroxidase, total soluble protein, superoxide dismutase, catalase (CAT), carotenoids, and fiber strength displayed higher mean values under heat stress conditions. Under both conditions, high genetic advance and high heritability were observed for seed cotton yield (SCY), CAT, micronaire value, plant height, and chlorophyll-a and b content, indicating that an additive type of gene action controls these traits under both the conditions. For more insights into variation, Pearson correlation analysis and principal component analysis (PCA) were performed. Significant positive associations were observed among agronomic, biochemical, and fiber quality-related traits. The multivariate analyses involving hierarchical clustering and PCA classified the 23 experimental genotypes into four groups under normal and high-temperature stress conditions. Under both conditions, the F1 hybrid genotype FB-SHAHEEN × JSQ WHITE GOLD followed by Ghuari-1, CCRI-24, Eagle-2 × FB-Falcon, Ghuari-1 × JSQ White Gold, and Eagle-2 exhibited better performance in response to high-temperature stress regarding the agronomic and fiber quality-related traits. The mentioned genotypes could be utilized in future cotton breeding programs to enhance heat tolerance and improve cotton yield and productivity through resistance to environmental stressors.

13.
GM Crops Food ; 12(1): 382-395, 2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-34193022

RESUMO

The idea of enhanced methanol production from cell wall by pectin methyl esterase enzymes (PME) combined with expression of cry genes from Bacillus thuringiensis as a strategy to improve insect pest control in cotton is presented. We constructed a cassette containing two cry genes (cry1Fa and Cry32Aa) and two pme genes, one from Arabidopsis thaliana (AtPME), and other from Aspergillus. niger (AnPME) in pCAMBIA1301 plant expression vector using CAMV-35S promoter. This construction was transformed in Eagle-2 cotton variety by using shoot apex-cut Agrobacterium-mediated transformation. Expression of cry genes and pme genes was confirmed by qPCR. Methanol production was measured in control and in the cry and pme transformed plants showing methanol production only in transformed plants, in contrast to the non-transgenic cotton plants. Finally, insect bioassays performed with transgenic plants expressing cry and pme genes showed 100% mortality for Helicoverpa armigera (cotton bollworm) larvae, 70% mortality for Pectinophora gossypiella (pink bollworm) larvae and 95% mortality of Earias fabia, (spotted bollworm) larvae, that was higher than the transgenic plants expressing only cry genes that showed 84%, 49% and 79% mortality, respectively. These results demonstrate that Bt. cry-genes coupled with pme genes are an effective strategy to improve the control of different insect pests.


Assuntos
Bacillus thuringiensis , Mariposas , Animais , Bacillus thuringiensis/genética , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Endotoxinas/genética , Gossypium/genética , Proteínas Hemolisinas/genética , Resistência a Inseticidas , Larva , Metanol , Plantas Geneticamente Modificadas
14.
Front Genet ; 12: 642595, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35401652

RESUMO

Lack of precise information about the candidate genes involved in a complex quantitative trait is a major obstacle in the cotton fiber quality improvement, and thus, overall genetic gain in conventional phenotypic selection is low. Recent molecular interventions and advancements in genome sequencing have led to the development of high-throughput molecular markers, quantitative trait locus (QTL) fine mapping, and single nucleotide polymorphisms (SNPs). These advanced tools have resolved the existing bottlenecks in trait-specific breeding. This review demonstrates the significance of chromosomes 3, 7, 9, 11, and 12 of sub-genomes A and D carrying candidate genes for fiber quality. However, chromosome 7 carrying SNPs for stable and potent QTLs related to fiber quality provides great insights for fiber quality-targeted research. This information can be validated by marker-assisted selection (MAS) and transgene in Arabidopsis and subsequently in cotton.

15.
Comput Methods Programs Biomed ; 185: 105137, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31671339

RESUMO

BACKGROUND: CNTs are categorized subject to their structures i.e., SWCNTs (single wall nanotubes), DWCNTs (double wall nanotubes) and MWCNTs (multi-wall nanotubes). The various structures have distinct characteristics that make the nanotubes suitable for various physical applications. It is due their unique electrical, mechanical and thermal attributes CNTs present thrilling opportunities for mechanical engineering, industrial, scientific research and commercial applications. There is fruitful potential for carbon nanotubes in the composites business and industry. Today, CNTs find utilization in frequent various products, and analyst continue to explore new applications. Currently applications comprise wind turbines, bicycle components, scanning probe microscopes, flat panel displays, marine paints, sensing devices, electronics, batteries with longer lifetime and electrical circuitry etc. Such applications in mind, entropy optimized dissipative CNTs based flow of nanomaterial by a stretched surface. Flow is caused due to stretching phenomenon and studied in 3D coordinates. Both types of CNTs are studied i.e., SWCNTs and MWCNTs. CNTs are considered for nanoparticles and water for continuous phase fluid. Special consideration is given to the analysis of statistical declaration and probable error for skin friction and Nusselt number. Furthermore, entropy rate is calculated. Entropy rate is discussed in the presence of four main irreversibilities i.e., heat transfer, Joule heating, porosity and dissipation. METHOD: Homotopy technique is utilized to develop the convergence series solutions. RESULTS: Impacts of sundry variables subject to both SWCNTs (single) and MWCNTs (multi) are graphically discussed. Statistical analysis and probable error for surface drag force and Nusselt number are numerically calculated subject to various flow variables. Numerical results for such engineering quantities are displayed through tables. In addition, comparative analysis for SWCNTs and MWCNTs are presented for the velocity, concentration and thermal fields. CONCLUSIONS: Results for entropy rate is calculated in the presence of various sundry variable through implementation of second law of thermodynamics. It is examined from the results that velocity decreases for both CNTs via higher magnetic, inertia coefficient and porosity parameters. Secondary velocity i.e., velocity in g-direction boosts up versus rotation parameter while it declines for larger slip parameter for both CNTs. thermal field intensifies for both CNTs via larger heat generation/absorption parameter. Concentration which shows the mass transfer of species increases subject to higher homogeneous parameter and Schmidt number in case of both CNTs. Entropy rate in more for larger magnetic, Reynolds number and slip parameter. Bejan number boosts up for higher Reynold number and slip parameter while it declines for magnetic parameter.


Assuntos
Entropia , Nanotubos de Carbono/química , Probabilidade , Termodinâmica
16.
J Food Sci ; 85(1): 14-20, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31869858

RESUMO

Salinity has drastic effects on plant growth and productivity and is one of the major factors responsible for crop yield losses throughout the agricultural soils of the world. The mechanisms of salinity tolerance in plants are regulated by a set of inherent multigenes and prevalent environmental factors, which bring about a myriad of metabolic changes in each plant part. The stress-induced metabolic changes in the rice plant have been intensively studied, but extensively in plant parts such as stem, leaf, and root. However, little information exists in the literature about such stress-induced architectural and physiological changes in rice grain, a premier staple food of a large proportion of human population. Thus, the current review comprehensively describes the effects of salinity stress on rice grain composition including changes in carbohydrate, protein, fat, and mineral contents. Elucidation of salinity induced changes in rice grain composition would help to understand whether or not a nutritious and healthy staple food is available to human population from rice grown under saline environments.


Assuntos
Oryza/fisiologia , Sementes/química , Oryza/química , Oryza/crescimento & desenvolvimento , Folhas de Planta/química , Folhas de Planta/metabolismo , Estresse Salino , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Estresse Fisiológico
17.
Psychol Res Behav Manag ; 12: 179-194, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30992685

RESUMO

BACKGROUND: The purpose of this study is to present a broad-brush picture based on empirical evidence on the role of hindrance stressors, motivation, and cultural novelty in expatriate adjustment. Drawing on trait activation theory, this study examines the moderating role of extraversion in enhancing cultural adjustment to achieve positive work engagement and organizational citizenship behavior (OCB) by expatriates. METHODS: We gathered data using a sample of 458 eastern expatriates with current international assignments in different countries around the world. They completed questionnaires sent to them using online platforms for expatriates. RESULTS: The results reveal that hindrance stressors and intrapersonal motivation significantly predict adjustment. Adjustment plays a partially mediating role in achieving OCB and expatriate work engagement. However, this work engagement is stronger when adjustment is used as a mediating factor. Surprisingly, our results provided paradox role of extraversion in predicting adjustment which was somewhat in contradiction to our hypothesized direction of moderating effect. CONCLUSION: Our research puts forward strategies for international business organizations when assigning business expatriates, especially in novel cultures. Our research provides valuable information about expatriates' context for international organizations planning for the accomplishment of their assignments in distant cultures.

18.
Artigo em Inglês | MEDLINE | ID: mdl-31263696

RESUMO

The use of chemicals around the globe in different industries has increased tremendously, affecting the health of people. The modern world intends to replace these noxious chemicals with environmental friendly products for the betterment of life on the planet. Establishing enzymatic processes in spite of chemical processes has been a prime objective of scientists. Various enzymes, specifically microbial proteases, are the most essentially used in different corporate sectors, such as textile, detergent, leather, feed, waste, and others. Proteases with respect to physiological and commercial roles hold a pivotal position. As they are performing synthetic and degradative functions, proteases are found ubiquitously, such as in plants, animals, and microbes. Among different producers of proteases, Bacillus sp. are mostly commercially exploited microbes for proteases. Proteases are successfully considered as an alternative to chemicals and an eco-friendly indicator for nature or the surroundings. The evolutionary relationship among acidic, neutral, and alkaline proteases has been analyzed based on their protein sequences, but there remains a lack of information that regulates the diversity in their specificity. Researchers are looking for microbial proteases as they can tolerate harsh conditions, ways to prevent autoproteolytic activity, stability in optimum pH, and substrate specificity. The current review focuses on the comparison among different proteases and the current problems faced during production and application at the industrial level. Deciphering these issues would enable us to promote microbial proteases economically and commercially around the world.

19.
Trials ; 19(1): 304, 2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-29855386

RESUMO

BACKGROUND: Following surgical fixation of ankle fractures, the traditional management has included immobilisation for 6 weeks in a below-knee cast. However, this can lead to disuse atrophy of the affected leg and joint stiffness. While early rehabilitation from 2 weeks post surgery is viewed as safe, controversy remains regarding its benefits. We will compare the effectiveness of early motion and directed exercise (EMADE) ankle rehabilitation, against usual care, i.e. 6 weeks' immobilisation in a below-knee cast. METHOD/DESIGN: We have designed a pragmatic randomised controlled trial (p-RCT) to compare the EMADE intervention against usual care. We will recruit 144 independently living adult participants, absent of tissue-healing comorbidities, who have undergone surgical stabilisation of isolated Weber B ankle fractures. The EMADE intervention consists of a non-weight-bearing progressive home exercise programme, complemented with manual therapy and education. Usual care consists of immobilisation in a non-weight-bearing below-knee cast. The intervention period is between week 2 and week 6 post surgery. The primary outcome is the Olerud and Molander Ankle Score (OMAS) patient-reported outcome measure (PROM) at 12 weeks post surgery. Secondary PROMs include the EQ-5D-5 L questionnaire, return to work and return to driving, with objective outcomes including ankle range of motion. Analysis will be on an intention-to-treat basis. An economic evaluation will be included. DISCUSSION: The EMADE intervention is a package of care designed to address the detrimental effects of disuse atrophy and joint stiffness. An advantage of the OMAS is the potential of meta-analysis with other designs. Within the economic evaluation, the cost-utility analysis, may be used by commissioners, while the use of patient-relevant outcomes, such as return to work and driving, will ensure that the study remains pertinent to patients and their families. As it is being conducted in the clinical environment, this p-RCT has high external validity. Accordingly, if significant clinical benefits and cost-effectiveness are demonstrated, EMADE should become a worthwhile treatment option. A larger-scale, multicentre trial may be required to influence national guidelines. TRIAL REGISTRATION: ISRCTN, ID: ISRCTN11212729 . Registered retrospectively on 20 March 2017.


Assuntos
Fraturas do Tornozelo/terapia , Articulação do Tornozelo/fisiopatologia , Intervenção Médica Precoce/métodos , Terapia por Exercício/métodos , Fixação de Fratura/reabilitação , Atividades Cotidianas , Fraturas do Tornozelo/diagnóstico por imagem , Fraturas do Tornozelo/fisiopatologia , Articulação do Tornozelo/diagnóstico por imagem , Fenômenos Biomecânicos , Inglaterra , Serviços de Assistência Domiciliar , Humanos , Manipulações Musculoesqueléticas , Educação de Pacientes como Assunto , Medidas de Resultados Relatados pelo Paciente , Ensaios Clínicos Pragmáticos como Assunto , Estudos Prospectivos , Amplitude de Movimento Articular , Recuperação de Função Fisiológica , Fatores de Tempo , Resultado do Tratamento
20.
Biotechnol Rep (Amst) ; 9: 66-73, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28352594

RESUMO

Expression of the transgene with a desirable character in crop plant is the ultimate goal of transgenic research. Transformation of two Bt genes namely Cry1Ac and Cry2A cloned as separate cassette under 35S promoter in pKHG4 plant expression vector was done by using shoot apex cut method of Agrobacterium. Molecular confirmation of putative transgenic cotton plants for Cry1Ac, Cry2A and GT gene was done through PCR and ELISA. Transformation efficiency of CRSP-1 and CRSP-2 was calculated to be 1.2 and 0.8% for Cry1Ac while 0.9 and 0.6% for Cry2A and 1.5 and 0.7% for GTG respectively. CRSP-1 was found to adopt natural environment (acclimatized) earlier than CRSP-2 when exposed to sunlight for one month. Expression of Cry1Ac, Cry2A and GTG was found to be 1.2, 1 and 1.3 ng/µl respectively for CRSP-1 as compared to CRSP-2 where expression was recorded to be 0.9, 0.5 and 0.9 ng/µl respectively. FISH analysis of the transgenic CRSP-1 and CRSP-2 demonstrated the presence of one and two copy numbers respectively. Similarly, the response of CRSP-1 against Glyphosate @1900 ml/acre was far better with almost negligible necrotic spot and efficient growth after spray as compared to CRSP-2 where some plants were found to have necrosis and negative control where the complete decay of plant was observed after seven days of spray assay. Similarly, almost 100% mortality of 2nd instar larvae of Heliothis armigera was recorded after three days in CRSP-1 as compared CRSP-2 where insect mortality was found to be less than 90%. Quantitatively speaking non transgenic plants were found with 23-90% leaf damage by insect, while CRSP-1 was with less than 5% and CRSP-2 with 17%. Taken together CRSP1 was found to have better insect control and weedicide resistance along with its natural ability of genetic modification and can be employed by the valuable farmers for better insect control and simultaneously for better production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA