Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Sensors (Basel) ; 24(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39001072

RESUMO

Internet of Things (IoT) devices are leading to advancements in innovation, efficiency, and sustainability across various industries. However, as the number of connected IoT devices increases, the risk of intrusion becomes a major concern in IoT security. To prevent intrusions, it is crucial to implement intrusion detection systems (IDSs) that can detect and prevent such attacks. IDSs are a critical component of cybersecurity infrastructure. They are designed to detect and respond to malicious activities within a network or system. Traditional IDS methods rely on predefined signatures or rules to identify known threats, but these techniques may struggle to detect novel or sophisticated attacks. The implementation of IDSs with machine learning (ML) and deep learning (DL) techniques has been proposed to improve IDSs' ability to detect attacks. This will enhance overall cybersecurity posture and resilience. However, ML and DL techniques face several issues that may impact the models' performance and effectiveness, such as overfitting and the effects of unimportant features on finding meaningful patterns. To ensure better performance and reliability of machine learning models in IDSs when dealing with new and unseen threats, the models need to be optimized. This can be done by addressing overfitting and implementing feature selection. In this paper, we propose a scheme to optimize IoT intrusion detection by using class balancing and feature selection for preprocessing. We evaluated the experiment on the UNSW-NB15 dataset and the NSL-KD dataset by implementing two different ensemble models: one using a support vector machine (SVM) with bagging and another using long short-term memory (LSTM) with stacking. The results of the performance and the confusion matrix show that the LSTM stacking with analysis of variance (ANOVA) feature selection model is a superior model for classifying network attacks. It has remarkable accuracies of 96.92% and 99.77% and overfitting values of 0.33% and 0.04% on the two datasets, respectively. The model's ROC is also shaped with a sharp bend, with AUC values of 0.9665 and 0.9971 for the UNSW-NB15 dataset and the NSL-KD dataset, respectively.

2.
Entropy (Basel) ; 24(6)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35741501

RESUMO

A ring oscillator is a well-known circuit used for generating random numbers, and interested readers can find many research results concerning the evaluation of the randomness with a packaged test suit. However, the authors think there is room for evaluating the unpredictability of a sequence from another viewpoint. In this paper, the authors focus on Wold's RO-based generator and propose a statistical test to numerically evaluate the randomness of the RO-based generator. The test adopts the state transition probabilities in a Markov process and is designed to check the uniformity of the probabilities based on hypothesis testing. As a result, it is found that the RO-based generator yields a biased output from the viewpoint of the transition probability if the number of ROs is small. More precisely, the transitions 01→01 and 11→11 happen frequently when the number l of ROs is less than or equal to 10. In this sense, l>10 is recommended for use in any application, though a packaged test suit is passed. Thus, the authors believe that the proposed test contributes to evaluating the unpredictability of a sequence when used together with available statistical test suits, such as NIST SP800-22.

3.
Entropy (Basel) ; 23(9)2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34573793

RESUMO

A cloud service to offer entropy has been paid much attention to. As one of the entropy sources, a physical random number generator is used as a true random number generator, relying on its irreproducibility. This paper focuses on a physical random number generator using a field-programmable gate array as an entropy source by employing ring oscillator circuits as a representative true random number generator. This paper investigates the effects of an XOR gate in the oscillation circuit by observing the output signal period. It aims to reveal the relationship between inputs and the output through the XOR gate in the target generator. The authors conduct two experiments to consider the relevance. It is confirmed that combining two ring oscillators with an XOR gate increases the complexity of the output cycle. In addition, verification using state transitions showed that the probability of the state transitions was evenly distributed by increasing the number of ring oscillator circuits.

4.
World J Microbiol Biotechnol ; 35(11): 176, 2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31673867

RESUMO

The aim of this study was to clarify effects of soil and climatic conditions on community structure of sweet potato bacterial endophytes by applying locked nucleic acid oligonucleotide-PCR clamping technique and metagenomic analysis. For this purpose, the soil samples in three locations were transferred each other and sweet potato nursery plants from the same farm were cultivated for ca. 3 months. After removal of plastid, mitochondria and undefined sequences, the averaged numbers of retained sequences and operational taxonomic units per sample were 20,891 and 846, respectively. Proteobacteria (85.0%), Bacteroidetes (6.6%) and Actinobacteria (6.3%) were the three most dominant phyla, accounting for 97.9% of the reads, and γ-Proteobacteria (66.3%) being the most abundant. Top 10 genera represented 81.2% of the overall reads in which Pseudomonas (31.9-45.0%) being the most predominant. The overall endophytic bacterial communities were similar among the samples which indicated that the soil and the climatic conditions did not considerably affect the entire endophytic community. The original endophytic bacterial community might be kept during the cultivation period.


Assuntos
Bactérias/classificação , Bactérias/metabolismo , Clima , Endófitos/classificação , Ipomoea batatas/microbiologia , Metagenoma , Microbiota , Solo/química , Bactérias/genética , Sequência de Bases , Biodiversidade , DNA Bacteriano/análise , DNA Mitocondrial/análise , Endófitos/genética , Microbiota/genética , Filogenia , RNA Ribossômico 16S/genética , Microbiologia do Solo
5.
Heliyon ; 10(11): e31573, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38841467

RESUMO

Endophytic bacteria, living inside plants, are competent plant colonizers, capable of enhancing immune responses in plants and establishing a symbiotic relationship with them. Endophytic bacteria are able to control phytopathogenic fungi while exhibiting plant growth-promoting activity. Here, we discussed the mechanisms of phytopathogenic fungi control and plant growth-promoting actions discovered in some major groups of beneficial endophytic bacteria such as Bacillus, Paenibacillus, and Pseudomonas. Most of the studied strains in these genera were isolated from the rhizosphere and soils, and a more extensive study of these endophytic bacteria is needed. It is essential to understand the underlying biocontrol and plant growth-promoting mechanisms and to develop an effective screening approach for selecting potential endophytic bacteria for various applications. We have suggested a screening strategy to identify potentially useful endophytic bacteria based on mechanistic phenomena. The discovery of endophytic bacteria with useful biocontrol and plant growth-promoting characteristics is essential for developing sustainable agriculture.

6.
Chemosphere ; 356: 141904, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582174

RESUMO

Rice blast, an extremely destructive disease caused by the filamentous fungal pathogen Magnaporthe oryzae, poses a global threat to the production of rice (Oryza sativa L.). The emerging trend of reducing dependence on chemical fungicides for crop protection has increased interest in exploring bioformulated nanomaterials as a sustainable alternative antimicrobial strategy for effectively managing plant diseases. Herein, we used physiomorphological, transcriptomic, and metabolomic methods to investigate the toxicity and molecular action mechanisms of moringa-chitosan nanoparticles (M-CNPs) against M. oryzae. Our results demonstrate that M-CNPs exhibit direct antifungal properties by impeding the growth and conidia formation of M. oryzae in a concentration-dependent manner. Propidium iodide staining indicated concentration-dependent significant apoptosis (91.33%) in the fungus. Ultrastructural observations revealed complete structural damage in fungal cells treated with 200 mg/L M-CNPs, including disruption of the cell wall and destruction of internal organelles. Transcriptomic and metabolomic analyses revealed the intricate mechanism underlying the toxicity of M-CNPs against M. oryzae. The transcriptomics data indicated that exposure to M-CNPs disrupted various processes integral to cell membrane biosynthesis, aflatoxin biosynthesis, transcriptional regulation, and nuclear integrity in M. oryzae., emphasizing the interaction between M-CNPs and fungal cells. Similarly, metabolomic profiling demonstrated that exposure to M-CNPs significantly altered the levels of several key metabolites involved in the integral components of metabolic pathways, microbial metabolism, histidine metabolism, citrate cycle, and lipid and protein metabolism in M. oryzae. Overall, these findings demonstrated the potent antifungal action of M-CNPs, with a remarkable impact at the physiological and molecular level, culminating in substantial apoptotic-like fungal cell death. This research provides a novel perspective on investigating bioformulated nanomaterials as antifungal agents for plant disease control.


Assuntos
Quitosana , Nanopartículas , Oryza , Doenças das Plantas , Transcriptoma , Quitosana/química , Nanopartículas/toxicidade , Nanopartículas/química , Transcriptoma/efeitos dos fármacos , Oryza/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Metabolômica , Antifúngicos/toxicidade , Antifúngicos/farmacologia , Ascomicetos/efeitos dos fármacos , Ascomicetos/genética
7.
Sci Total Environ ; 933: 173068, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38723965

RESUMO

Cadmium (Cd) is an extremely toxic heavy metal that can originate from industrial activities and accumulate in agricultural soils. This study investigates the potential of biologically synthesized silicon oxide nanoparticles (Bio-SiNPs) in alleviating Cd toxicity in bayberry plants. Bio-SiNPs were synthesized using the bacterial strain Chryseobacterium sp. RTN3 and thoroughly characterized using advanced techniques. A pot experiment results demonstrated that Cd stress substantially reduced leaves biomass, photosynthesis efficiency, antioxidant enzyme activity, and induced oxidative damage in bayberry (Myrica rubra) plants. However, Bio-SiNPs application at 200 mg kg-1 significantly enhanced plant biomass, chlorophyll content (26.4 %), net photosynthetic rate (8.6 %), antioxidant enzyme levels, and mitigated reactive oxygen species production under Cd stress. Bio-SiNPs modulated key stress-related phytohormones by increasing salicylic acid (13.2 %) and abscisic acid (13.7 %) contents in plants. Bio-SiNPs augmented Si deposition on root surfaces, preserving normal ultrastructure in leaf cells. Additionally, 16S rRNA gene sequencing demonstrated that Bio-SiNPs treatment favorably reshaped structure and abundance of specific bacterial groups (Proteobacteria, Actinobacteriota, and Acidobacteriota) in the rhizosphere. Notably, Bio-SiNPs application significantly modulated the key metabolites (phenylacetaldehyde, glycitein, maslinic acid and methylmalonic acid) under both normal and Cd stress conditions. Overall, this study highlights that bio-nanoremediation using Bio-SiNPs enhances tolerance to Cd stress in bayberry plants by beneficially modulating biochemical, microbial, and metabolic attributes.


Assuntos
Cádmio , Myrica , Rizosfera , Microbiologia do Solo , Poluentes do Solo , Poluentes do Solo/toxicidade , Cádmio/toxicidade , Microbiota/efeitos dos fármacos , Dióxido de Silício , Nanopartículas/toxicidade
8.
Microorganisms ; 11(4)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37110240

RESUMO

Polymyxin-producing bacteria within the Paenibacillus polymyxa complex have broad-spectrum activities against fungi and bacteria. Their antibacterial activities against soft rot Dickeya and Pectobacterium phytopathogens containing multiple polymyxin-resistant genes were not clear. Here, we selected nine strains within the P. polymyxa complex having broad-spectrum antagonistic activities against phytopathogenic fungi and a polymyxin-resistant D. dadantii strain causing stem and root rot disease of sweet potato and did antagonistic assays on nutrient agar and sweet potato tuber slices. These strains within the P. polymyxa complex showed clear antagonistic activities against D. dadantii in vitro and in vivo. The most effective antagonistic strain P. polymyxa ShX301 showed broad-spectrum antagonistic activities against all the test Dickeya and Pectobacterium strains, completely eliminated D. dadantii from sweet potato seed tubers, and promoted the growth of sweet potato seedlings. Cell-free culture filtrate of P. polymyxa ShX301 inhibited D. dadantii growth, swimming motility, and biofilm formation and disrupted D. dadantii plasma membranes, releasing nucleic acids and proteins. Multiple lipopeptides produced by P. polymyxa ShX301 may play a major role in the bactericidal and bacteriostatic actions. This study clarifies that the antimicrobial spectrum of polymyxin-producing bacteria within the P. polymyxa complex includes the polymyxin-resistant Dickeya and Pectobacterium phytopathogens and strengthens the fact that bacteria within the P. polymyxa complex have high probability of being effective biocontrol agents and plant growth promoters.

9.
Plants (Basel) ; 12(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37176882

RESUMO

Nanomaterials are increasingly being used for crop growth, especially as a new paradigm for plant disease management. Among the other nanomaterials, silver nanoparticles (AgNPs) draw a great deal of attention because of their unique features and multiple usages. Rapid expansion in nanotechnology and utilization of AgNPs in a large range of areas resulted in the substantial release of these nanoparticles into the soil and water environment, causing concern for the safety of ecosystems and phytosanitary. In an attempt to find an effective control measure for sweet potato soft rot disease, the pathogen Dickeya dadantii was exposed to AgNPs, the cell-free culture supernatant (CFCS) of Bacillus amyloliquefaciens alone, and both in combination. AgNPs were synthesized using CFCS of Bacillus amyloliquefaciens strain A3. The green synthesized AgNPs exhibited a characteristic surface plasmon resonance peak at 410-420 nm. Electron microscopy and X-ray diffraction spectroscopy determined the nanocrystalline nature and 20-100 nm diameters of AgNPs. Release of metal Ag+ ion from biosynthesized AgNPs increases with time. AgNPs and CFCS of B. amyloliquefaciens alone exhibited antibacterial activity against the growth, biofilm formation, swimming motility, and virulence of strain A3. The antibacterial activities elevated with the elevation in AgNPs and CFCS concentration. Similar antibacterial activities against D. dadantii were obtained with AgNPs at 50 µg·mL-1, 50% CFCS alone, and the combination of AgNPs at 12 µg·mL-1 and 12% CFCS of B. amyloliquefaciens. In planta experiments indicated that all the treatments reduced D. dadantii infection and increased plant growth. These findings suggest that AgNPs along with CFCS of B. amyloliquefaciens can be applied to minimize this bacterial disease by controlling pathogen-contaminated sweet potato tuber with minimum Ag nano-pollutant in the environment.

10.
Microorganisms ; 10(2)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35208879

RESUMO

Kiwifruit worldwide suffers from the devastating diseases of bacterial canker caused by Pseudomonas syringae pv. actinidiae (Psa) and gray mold caused by Botrytis cinerea. Here, an endophytic bacterium XL17 isolated from a rape crown gall was screened out for its potent antagonistic activities against Psa and B. cinerea. Strain XL17 and its cell-free culture filtrate (CF) inhibited the growth of Psa and B. cinerea, Psa-associated leaf necrosis, and B. cinerea-associated kiwifruit necrosis. Electron microscopy showed that XL17 CF could damage the cell structures of Psa and B. cinerea. Genome-based taxonomy revealed that strain XL17 belongs to Pseudomonas bijieensis within the P. corrugata subgroup of the P. fluorescens species complex. Among the P. corrugata subgroup containing 31 genomospecies, the presence of the phl operon responsible for the biosynthesis of the phenolic polyketide 2,4-diacetylphloroglucinol (DAPG) and the absence of the lipopeptide/quorum sensing island can serve as the genetic marker for the determination of a plant-protection life style. HPLC detected DAPG in extracts from XL17 CF. MALDI-TOF-MS analysis revealed that strain XL17 produced cyclic lipopeptides of the viscosin family and orfamide family. Together, phenotypic, genomic, and metabolic analyses identified that P. bijieensis XL17 producing DAPG and cyclic lipopeptides can be used to control bacterial canker and gray mold pathogens of kiwifruit.

11.
NanoImpact ; 21: 100281, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-35559773

RESUMO

Pestalotiopsis versicolor is a most destructive fungal pathogen that causes twig blight disease in bayberry. For the last seven years, it is difficult to control this pathogen due to its latent infestation mode and its control through chemical fungicides is environmentally corrosive in addition to being costly. In this study, we reported the fungicidal potential of biologically synthesized zirconium oxide nanoparticles (ZrONPs) against P. versicolor for the first time. The strain used for green synthesis of ZrONPs was taxonomically identified as Enterobacter sp. strain RNT10. The production of ZrONPs in reaction mixture was confirmed through UV-vis spectroscopy analysis. Moreover, FTIR, XRD, SEM and TEM analysis showed the presence of capping proteins and crystalline nature of spherical shaped ZrONPs with particle size ranging from 33 to 75 nm. EDX spectra revealed an elemental profile of ZrONPs comprising of Zr (54.40%) and oxygen (43.49%). Biogenic ZrONPs showed substantial antifungal inhibition zones (25.18 ± 1.52 mm) at 20 µg mL-1 concentration against P. versicolor strain XJ27. Moreover, the treatment of 20 µg mL-1 ZrONPs significantly inhibited twig blight in detached leaf assay. Furthermore, imaging through SEM and TEM showed the adverse effects of ZrONPs against P. versicolor in terms of extracellular leakage of DNA and proteins. Overall, this study suggested that biogenic ZrONPs could substitute chemically synthesized antifungal agents with the specific application towards control of twig blight disease in bayberry.


Assuntos
Myrica , Nanopartículas , Antifúngicos/farmacologia , Enterobacter , Nanopartículas/química , Pestalotiopsis , Zircônio
12.
Int J Biol Macromol ; 168: 834-845, 2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-33242551

RESUMO

Chitosan is a potent biopolymer having promising antimicrobial properties against phytopathogens. Recently, engineered nanomaterials (ENMs) have gained much attention due to their potential application in the plant disease management. In this study, we reported the green synthesis of chitosan-magnesium (CS-Mg) nanocomposite and its antimicrobial activity against two rice pathogens namely Acidovorax oryzae and Rhizoctonia solani for the first time. The green MgO nanoparticles synthesized by using a native Bacillus sp. strain RNT3, were used to fabricate CS-Mg nanocomposite utilizing one-pot synthesis method. The synthesis of CS-Mg nanocomposite was further confirmed by using UV-vis spectroscopy, whereas, FTIR and XRD analysis showed the capping of CS-Mg nanocomposites by different functional groups together with their crystalline structure, respectively. Besides, SEM and TEM images revealed the spherical shape along with the particles size ranging from 29 to 60 nm. Moreover, EDS analysis confirmed the elemental purity of nanocomposite. The CS-Mg nanocomposite showed remarkable antimicrobial activity against A. oryzae and R. solani and significantly inhibited the growth as compared to non-treated control. The ultrastructure studies showed damaged structure of cell wall and internal cellular organelles after treatment with 100 µg mL-1 CS-Mg nanocomposite. The results of this study indicated that CS-Mg nanocomposite-based antimicrobial agents could be considered as promising nanopesticides against phytopathogens in plant disease management.


Assuntos
Anti-Infecciosos/farmacologia , Quitosana/farmacologia , Comamonadaceae/crescimento & desenvolvimento , Magnésio/química , Oryza/crescimento & desenvolvimento , Rhizoctonia/crescimento & desenvolvimento , Anti-Infecciosos/química , Parede Celular/efeitos dos fármacos , Quitosana/química , Comamonadaceae/efeitos dos fármacos , Resistência à Doença , Química Verde , Nanopartículas de Magnetita , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Nanocompostos , Oryza/microbiologia , Rhizoctonia/efeitos dos fármacos , Difração de Raios X
13.
Protein Pept Lett ; 28(8): 861-877, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33602066

RESUMO

Abiotic stresses in plants such as salinity, drought, heavy metal toxicity, heat, and nutrients limitations significantly reduce agricultural production worldwide. The genome editing techniques such as transcriptional activator-like effector nucleases (TALENs) and zinc finger nucleases (ZFNs) have been used for genome manipulations in plants. However, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) technique has recently emerged as a promising tool for genome editing in plants to acquire desirable traits. The CRISPR/Cas9 system has a great potential to develop crop varieties with improved tolerance against abiotic stresses. This review is centered on the biology and potential application of the CRISPR/Cas9 system to improve abiotic stress tolerance in plants. Furthermore, this review highlighted the recent advancements of CRISPR/Cas9-mediated genome editing for sustainable agriculture.


Assuntos
Sistemas CRISPR-Cas , Produtos Agrícolas/genética , Edição de Genes , Genoma de Planta , Plantas/genética , Estresse Fisiológico/genética
14.
Front Microbiol ; 11: 588326, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33343527

RESUMO

Xanthomonas oryzae pv. oryzae (Xoo) is the most infectious pathogen of rice, which causes bacterial leaf blight (BLB) disease. However, the accumulation of chemical or antibiotic resistance of Xoo necessitate the development of its alternative control. In this study, we biologically synthesize three metal oxide nanoparticles (ZnO, MnO2, and MgO) using rhizophytic bacteria Paenibacillus polymyxa strain Sx3 as reducing agent. The biosynthesis of nanoparticles was confirmed and characterized by using UV-vis spectroscopy, XRD, FTIR, EDS, SEM, and TEM analysis. The UV Vis reflectance of the nanoparticle had peaks at 385, 230, and 230 nm with an average crystallite particle size 62.8, 18.8, and 10.9 nm for ZnO, MnO2, and MgO, respectively. Biogenic ZnO, MnO2, and MgO nanoparticles showed substantial significant inhibition effects against Xoo strain GZ 0006 at a concentration of 16.0 µg/ml, for which the antagonized area was 17, 13, and 13 mm and the biofilm formation was decreased by 74.5, 74.4, and 80.2%, respectively. Moreover, the underlining mechanism of nanoparticles was inferred to be in relation to the reactive oxygen species based on their antibacterial efficiency and the deformity in the cell wall phenomenon. Overall, an attractive and eco-friendly biogenic ZnO, MnO2, and MgO nanoparticles were successfully produced. Altogether, the results suggest that the nanoparticles had an excellent antibacterial efficacy against BLB disease in rice plants, together with the increase in growth parameter and rice biomass. In conclusion, the synthesized nanoparticles could serve as an alternative safe measure in combatting the antibiotic-resistant of Xoo.

15.
Front Microbiol ; 11: 618601, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33537018

RESUMO

Bacteria belonging to the genus Paenibacillus were frequently isolated from legume nodules. The nodule-inhabiting Paenibacillus as a resource of biocontrol and plant growth-promoting endophytes has rarely been explored. This study explored the nodule-inhabiting Paenibacillus' antifungal activities and biocontrol potentials against broad-spectrum important phytopathogenic fungi. We collected strains which were isolated from nodules of Robinia pseudoacacia, Dendrolobium triangulare, Ormosia semicastrata, Cicer arietinum, Acacia crassicarpa, or Acacia implexa and belong to P. peoriae, P. kribbensis, P. endophyticus, P. enshidis, P. puldeungensis, P. taichungensis, or closely related to P. kribbensis, or P. anseongense. These nodule-inhabiting Paenibacillus showed diverse antagonistic activities against five phytopathogenic fungi (Fusarium graminearum, Magnaporthe oryzae, Rhizoctonia solani, Sclerotinia sclerotiorum, and Botrytis cinerea). Six strains within the P. polymyxa complex showed broad-spectrum and potent activities against all the five pathogens, and produced multiple hydrolytic enzymes, siderophores, and lipopeptide fusaricidins. Fusaricidins are likely the key antimicrobials responsible for the broad-spectrum antifungal activities. The nodule-inhabiting strains within the P. polymyxa complex were able to epiphytically and endophytically colonize the non-host wheat plants, produce indole acetic acids (IAA), and dissolve calcium phosphate and calcium phytate. P. peoriae strains RP20, RP51, and RP62 could fix N2. P. peoriae RP51 and Paenibacillus sp. RP31, which showed potent plant colonization and plant growth-promotion competence, effectively control fungal infection in planta. Genome mining revealed that all strains (n = 76) within the P. polymyxa complex contain ipdC gene encoding indole-3-pyruvate decarboxylase for biosynthesis of IAA, 96% (n = 73) contain the fus cluster for biosynthesis of fusaricidins, and 43% (n = 33) contain the nif cluster for nitrogen fixation. Together, our study highlights that endophytic strains within the P. polymyxa complex have a high probability to be effective biocontrol agents and biofertilizers and we propose an effective approach to screen strains within the P. polymyxa complex.

16.
Nanomaterials (Basel) ; 10(6)2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32545239

RESUMO

A large number of metallic nanoparticles have been successfully synthesized by using different plant extracts and microbes including bacteria, fungi viruses and microalgae. Some of these metallic nanoparticles showed strong antimicrobial activities against phytopathogens. Here, we summarized these green-synthesized nanoparticles from plants and microbes and their applications in the control of plant pathogens. We also discussed the potential deleterious effects of the metallic nanoparticles on plants and beneficial microbial communities associated with plants. Overall, this review calls for attention regarding the use of green-synthesized metallic nanoparticles in controlling plant diseases and clarification of the risks to plants, plant-associated microbial communities, and environments before using them in agriculture.

17.
Materials (Basel) ; 12(8)2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30991643

RESUMO

Recently, the demand for reinforced plastics from natural, sustainable, biodegradable, and environmentally friendly fibers has been rising worldwide. However, the main shortcoming of natural fibers reinforced plastics is the poor compatibility between reinforcing fibers and the matrix. Hence, it is necessary to form a strong attachment of the fibers to the matrix to obtain the optimum performance. In this work, chemical treatments (acid pretreatment, alkali pretreatment, and scouring) were employed on jute fibers to modify them. The mechanical properties, surface morphology, and Fourier transform infrared spectra of treated and untreated jute fibers were analyzed to understand the influence of chemical modifications on the fiber. Then, jute fiber/epoxy composites with a unidirectional jute fiber organization were prepared. Basic properties of the composites such as the void fraction, tensile strength, initial modulus, and elongation at break were studied. The better interfacial adhesion of treated fibers was shown by scanning electron microscope (SEM) images of fractured coupons. Hence, the chemical treatment of jute fiber has a significant impact on the formation of voids in the composites as well as the mechanical properties of jute fiber composites.

18.
Biomolecules ; 9(12)2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31835898

RESUMO

Edible plant fruits are safe raw materials free of toxicants and rich in biomolecules for reducing metal ions and stabilizing nanoparticles. Zinc oxide nanoparticles (ZnONPs) and titanium dioxide nanoparticles (TiO2NPs) are the most produced consumer nanomaterials and have known antibacterial activities but have rarely been used against phytopathogenic bacteria. Here, we synthesized ZnONPs and TiO2NPs simply by mixing ZnO or TiO2 solution with a lemon fruit extract at room temperature and showed their antibacterial activities against Dickeya dadantii, which causes sweet potato stem and root rot disease occurring in major sweet potato planting areas in China. Ultraviolet-visible spectrometry and energy dispersive spectroscopy determined their physiochemical characteristics. Transmission electron microscopy, scanning electron microscopy, and X-ray diffraction spectroscopy revealed the nanoscale size and polymorphic crystalline structures of the ZnONPs and TiO2NPs. Fourier-transform infrared spectroscopy revealed their surface stabilization groups from the lemon fruit extract. In contrast to ZnO and TiO2, which had no antibacterial activity against D. dadantii, ZnONPs and TiO2NPs showed inhibitions on D. dadantii growth, swimming motility, biofilm formation, and maceration of sweet potato tuber slices. ZnONPs and TiO2NPs showed similar extents of antibacterial activities, which increased with the increase of nanoparticle concentrations, and inhibited about 60% of D. dadantii activities at the concentration of 50 µg∙mL-1. The green synthetic ZnONPs and TiO2NPs can be used to control the sweet potato soft rot disease by control of pathogen contamination of seed tubers.


Assuntos
Antibacterianos/farmacologia , Gammaproteobacteria/efeitos dos fármacos , Nanopartículas/química , Extratos Vegetais/farmacologia , Titânio/farmacologia , Óxido de Zinco/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Citrus/química , Dickeya , Frutas/química , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Titânio/química , Óxido de Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA