Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Funct Integr Genomics ; 24(2): 73, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598147

RESUMO

Vitamin C, also known as ascorbic acid, is an essential nutrient that plays a critical role in many physiological processes in plants and animals. In humans, vitamin C is an antioxidant, reducing agent, and cofactor in diverse chemical processes. The established role of vitamin C as an antioxidant in plants is well recognized. It neutralizes reactive oxygen species (ROS) that can cause damage to cells. Also, it plays an important role in recycling other antioxidants, such as vitamin E, which helps maintain the overall balance of the plant's antioxidant system. However, unlike plants, humans cannot synthesize ascorbic acid or vitamin C in their bodies due to the absence of an enzyme called gulonolactone oxidase. This is why humans need to obtain vitamin C through their diet. Different fruits and vegetables contain varying levels of vitamin C. The biosynthesis of vitamin C in plants occurs primarily in the chloroplasts and the endoplasmic reticulum (ER). The biosynthesis of vitamin C is a complex process regulated by various factors such as light, temperature, and plant hormones. Recent research has identified several key genes that regulate vitamin C biosynthesis, including the GLDH and GLDH genes. The expression of these genes is known to be regulated by various factors such as light, temperature, and plant hormones. Recent studies highlight vitamin C's crucial role in regulating plant stress response pathways, encompassing drought, high salinity, and oxidative stress. The key enzymes in vitamin C biosynthesis are L-galactose dehydrogenase (GLDH) and L-galactono-1, 4-lactone dehydrogenase (GLDH). Genetic studies reveal key genes like GLDH and GLDH in Vitamin C biosynthesis, offering potential for crop improvement. Genetic variations influence nutritional content through their impact on vitamin C levels. Investigating the roles of genes in stress responses provides insights for developing resilient techniques in crop growth. Some fruits and vegetables, such as oranges, lemons, and grapefruits, along with strawberries and kiwi, are rich in vitamin C. Guava. Papaya provides a boost of vitamin C and dietary fiber. At the same time, red and yellow bell peppers, broccoli, pineapple, mangoes, and kale are additional sources of this essential nutrient, promoting overall health. In this review, we will discuss a brief history of Vitamin C and its signaling and biosynthesis pathway and summarize the regulation of its content in various fruits and vegetables.


Assuntos
Ácido Ascórbico , Verduras , Animais , Humanos , Antioxidantes , Frutas/genética , Reguladores de Crescimento de Plantas , Produtos Agrícolas/genética , Transdução de Sinais
2.
Plant Biotechnol J ; 22(7): 1800-1811, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38344883

RESUMO

The plant rapid alkalinization factor (RALF) peptides function as key regulators in cell growth and immune responses through the receptor kinase FERONIA (FER). In this study, we report that the transcription factor FgPacC binds directly to the promoter of FgRALF gene, which encodes a functional homologue of the plant RALF peptides from the wheat head blight fungus Fusarium graminearum (FgRALF). More importantly, FgPacC promotes fungal infection via host immune suppression by activating the expression of FgRALF. The FgRALF peptide also exhibited typical activities of plant RALF functions, such as inducing plant alkalinization and inhibiting cell growth, including wheat (Triticum aestivum), tomato (Solanum lycopersicum) and Arabidopsis thaliana. We further identified the wheat receptor kinase FERONIA (TaFER), which is capable of restoring the defects of the A. thaliana FER mutant. In addition, we found that FgRALF peptide binds to the extracellular malectin-like domain (ECD) of TaFER (TaFERECD) to suppress the PAMP-triggered immunity (PTI) and cell growth. Overexpression of TaFERECD in A. thaliana confers plant resistance to F. graminearum and protects from FgRALF-induced cell growth inhibition. Collectively, our results demonstrate that the fungal pathogen-secreted RALF mimic suppresses host immunity and inhibits cell growth via plant FER receptor. This establishes a novel pathway for the development of disease-resistant crops in the future without compromising their yield potential.


Assuntos
Arabidopsis , Fusarium , Imunidade Vegetal , Arabidopsis/imunologia , Arabidopsis/genética , Arabidopsis/microbiologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Triticum/microbiologia , Triticum/genética , Triticum/imunologia , Triticum/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Regulação da Expressão Gênica de Plantas , Fosfotransferases/metabolismo , Fosfotransferases/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Solanum lycopersicum/microbiologia , Solanum lycopersicum/genética , Solanum lycopersicum/imunologia , Solanum lycopersicum/metabolismo , Proteínas Serina-Treonina Quinases
3.
BMC Genomics ; 24(1): 603, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821819

RESUMO

Zinc finger-homeodomain (ZHD) proteins are mostly expressed in plants and are involved in proper growth and development and minimizing biotic and abiotic stress. A recent study identified and characterized the ZHD gene family in chilli (Capsicum annuum L.) to determine their probable molecular function. ZHD genes with various physicochemical characteristics were discovered on twelve chromosomes in chilli. We separated ZHD proteins into two major groups using sequence alignment and phylogenetic analysis. These groups differ in gene structure, motif distribution, and a conserved ZHD and micro-zinc finger ZF domain. The majority of the CaZHDs genes are preserved, early duplication occurred recently, and significant pure selection took place throughout evolution, according to evolutionary study. According to expression profiling, the genes were found to be equally expressed in tissues above the ground, contribute to plant growth and development and provide tolerance to biotic and abiotic stress. This in silico analysis, taken as a whole, hypothesized that these genes perform distinct roles in molecular and phytohormone signaling processes, which may serve as a foundation for subsequent research into the roles of these genes in other crops.


Assuntos
Capsicum , Capsicum/genética , Capsicum/metabolismo , Filogenia , Proteínas de Ligação a DNA/genética , Dedos de Zinco/genética , Genes Homeobox , Estresse Fisiológico/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
4.
Arch Microbiol ; 205(11): 358, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37878074

RESUMO

Volatile organic compounds (VOCs), produced by a variety of microbial species and used as biological agents, have been demonstrated to play a significant role in controlling phytopathogens. In continuation of our previous studies, we aim to elucidate the underlying mechanisms and pathways involved in interactions between pathogens and microbial VOCs. In the current study, we tested how VOCs produced by Bacillus velezensis FZB42 affect the growth of Ralstonia solanacearum TBBS1 in vitro.Query The result showed that the colony growth of R. solanacearum was reduced with an inhibition rate of 0.83 ± 0.043 as compared to the control 1.7 ± 0.076, respectively. The number of viable cells of R. solanacearum was significantly decreased to 7.68 CFU/mL as compared to the control (9.02 CFU/mL). In addition, transcriptomic analysis of R. solanacearum in response to VOCs produced by FZB42 was performed to better understand the effect of VOCs on R. solanacearum. The transcriptional response of R. solanacearum to FZB42-VOCs was determined using an Illumina RNA-seq approach. The results revealed significant changes in the expression of 2094 R. solanacearum genes, including 593 upregulated and 1501 downregulated genes. To validate the RNA-seq results, the expression of 10 genes was quantified using RT-qPCR. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases were used to functionally annotate differentially expressed genes. Significant changes were observed in genes directly or indirectly related to virulence, including those related to bacterial invasion, motility, chemotaxis, and secretion systems. Overall, RNA-seq profiling provides new insights into the possible fundamental molecular mechanisms that are responsible for the reduction in growth and virulence of R. solanacearum upon application of FZB42-VOC.


Assuntos
Ralstonia solanacearum , Compostos Orgânicos Voláteis , Ralstonia solanacearum/genética , Transcriptoma , Perfilação da Expressão Gênica , Antibacterianos , Compostos Orgânicos Voláteis/farmacologia
5.
Physiol Plant ; 175(6): e14108, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148237

RESUMO

Plants cannot avoid environmental challenges and are constantly threatened by diverse biotic and abiotic stresses. However, plants have developed a unique immune system to defend themselves against the invasion of various pathogens. Melatonin, N-acetyl-5-methoxytryptamine has positive physiological effects in plants that are involved in disease resistance. The processes underlying melatonin-induced pathogen resistance in plants are still unknown. The current study explores how melatonin regulates the plant-disease interaction in maize. The results showed that 400 µM melatonin strongly reduced the disease lesion on maize stalks by 1.5 cm and corn by 4.0 cm caused by Fusarium graminearum PH-1. Furthermore, after treatment with melatonin, the plant defense enzymes like SOD significantly increased, while POD and APX significantly decreased compared to the control. In addition, melatonin can also improve maize's innate immunity, which is mediated by melatonin treatments through the salicylic acid signaling pathway, and up-regulate the defense-associated expression of PR1, LOX1, OXR, serPIN, and WIPI genes in maize. Melatonin not only inhibits the disease in the maize stalks and corn, but also down-regulates the deoxynivalenol (DON) production-related expression of genes Tri1, Tri4, Tri5, and Tri6 in maize. Overall, this study sheds new light on the mechanisms by which melatonin regulates antioxidant enzymes and defense-related genes involved in plant immunity to effectively suppress plant diseases.


Assuntos
Fusarium , Melatonina , Melatonina/farmacologia , Zea mays/metabolismo , Virulência , Plantas , Doenças das Plantas
6.
Physiol Plant ; 175(1): e13868, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36724171

RESUMO

The plant parasitic nematode Aphelenchoides besseyi is a major pest that poses serious threats to different vegetables and crop plants. In the present study, volatiles isolated from Bacillus spp. were utilized as green biocontrol agents to overcome nematodes. In in vitro experiment, Bacillus spp. GBSC56, SYST2, and FZB42 showed the strongest nematicidal activity with killing rates of 80.78%, 75.69%, and 60.45%, respectively, as compared with control. The selected synthetic volatile organic compounds (VOCs), namely albuterol, benzaldehyde (BDH), 1,2-benzisothiazol-3(2H)-one (1,2-HIT), dimethyl disulfide (DMDS), 2-undecanone (2-UD), and 1,3-propanediole (1,3-PD), exhibited strong nematicidal activity, with A. besseyi killing rate of 85.58%, 82.65%, 81.75%, 80.36%, 84.45%, and 82.36%, respectively, at 400 µg/mL. Microscopic analysis proved that the rapid mortality was due to the production of reactive oxygen species (ROS). Molecular docking attributed this ROS production to the nematicidal effect of synthetic VOCs on NADH DEHYDROGENASE SUBUNIT 2, which is known to play a critical role in the suppression of ROS in nematode models. In a greenhouse experiment, the Bacillus strains GBSC56, SYST2, and FZB42 and their synthetic VOCs significantly improved the physiological parameters in terms of growth promotion traits. In addition, selected genes related to growth promotion and defense genes showed a significant upregulation of their expression in rice seedlings treated with those synthetic VOCs. Overall, these findings revealed that the selected Bacillus strains and their synthetic VOCs possess high potential against A. besseyi. Moreover, this study also sheds new light on the mechanisms by which specific Bacillus nematicidal VOCs influence important genes involved in rice plant growth promotion and could effectively be used to suppress plant parasitic nematodes.


Assuntos
Bacillus , Nematoides , Oryza , Animais , Espécies Reativas de Oxigênio/metabolismo , Simulação de Acoplamento Molecular , Plantas , Estresse Oxidativo
7.
Physiol Plant ; 175(6): e14087, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148207

RESUMO

Rhizoctonia solani and Xanthomonas oryzae pv. oryzae (Xoo) are the two major diseases affecting the quality and quantity of rice production. In the current study, volatile organic compounds (VOCs) of Bacillus spp. were used as green biocontrol agents for plant diseases. In in vitro experiments, Bacillus spp. FZB42, NMTD17, and LLTC93-VOCs displayed strong antimicrobial volatile activity with inhibition rates of 76, 66, and 78% for R. solani and 78, 81, and 76% for Xoo, respectively, compared to control. The synthetic VOCs, namely Pentadecane (PDC), Benzaldehyde (BDH), 1,2-Benz isothiazol-3(2H)-one (1,2-BIT), and mixture (MIX) of VOCs showed high volatile activity with inhibition rates of 86, 86, 89, and 92% against R. solani and 81, 81, 82, and 86%, respectively, against Xoo as compared to control. In addition, the scanning and transmission electron microscopes (SEM and TEM) analyses were performed to examine the effect of Bacillus and synthetic VOC treatments on R. solani and Xoo morphology. The analysis revealed the deformed and irregularized morphology of R. solani mycelia and Xoo cells after VOC treatments. The microscopic analysis showed that the rapid inhibition was due to severe oxidative productions inside the R. solani mycelia and Xoo cells. By using molecular docking, it was determined that the synthetic VOCs entered the active binding site of trehalase and NADH dehydrogenase proteins, causing R. solani and Xoo cells to die prematurely and an accumulation of ROS. In the greenhouse experiment, FZB42, NMTD17, and LLTC93-VOCs significantly reduced the lesions of R. solani 8, 7, and 6 cm, and Xoo 7, 6, and 6 cm, respectively, then control. The synthetic VOCs demonstrated that the PDC, BDH, 1,2-BIT, and MIX-VOCs significantly reduced R. solani lesions on leaves 6, 6, 6, and 5 cm and Xoo 6, 5, 5, and 4 cm, respectively, as compared to control. Furthermore, plant defence-related genes and antioxidant enzymes were upregulated in rice plants. These findings provide novel mechanisms by which Bacillus antimicrobial VOCs control plant diseases.


Assuntos
Anti-Infecciosos , Bacillus , Oryza , Compostos Orgânicos Voláteis , Xanthomonas , Compostos Orgânicos Voláteis/farmacologia , Compostos Orgânicos Voláteis/metabolismo , Simulação de Acoplamento Molecular , Doenças das Plantas/genética , Oryza/metabolismo , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia
8.
Int J Mol Sci ; 24(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37834106

RESUMO

The doubled haploid (DH) technology is employed worldwide in various crop-breeding programs, especially maize. Still, restoring tassel fertility is measured as one of the major restrictive factors in producing DH lines. Colchicine, nitrous oxide, oryzalin, and amiprophosmethyl are common chromosome-doubling agents that aid in developing viable diploids (2n) from sterile haploids (n). Although colchicine is the most widely used polyploidy-inducing agent, it is highly toxic to mammals and plants. Therefore, there is a dire need to explore natural, non-toxic, or low-toxic cheaper and accessible substitutes with a higher survival and fertility rate. To the best of our knowledge, the advanced usage of human anticancer drugs "Paclitaxel (PTX)" and "Caffeine-Taurine (CAF-T)" for in vivo maize haploids doubling is being disclosed for the first time. These two antimitotic and antimicrotubular agents (PTX and CAF-T) were assessed under various treatment conditions compared to colchicine. As a result, the maximum actual doubling rates (ADR) for PTX versus colchicine in maize haploid seedlings were 42.1% (400 M, 16 h treatment) versus 31.9% (0.5 mM, 24 h treatment), respectively. In addition, the ADR in maize haploid seeds were CAF-T 20.0% (caffeine 2 g/L + taurine 12 g/L, 16 h), PTX 19.9% (100 µM, 24 h treatment), and colchicine 26.0% (2.0 mM, 8 h treatment). Moreover, the morphological and physiological by-effects in haploid plants by PTX were significantly lower than colchicine. Hence, PTX and CAF-T are better alternatives than the widely used traditional colchicine to improve chromosome-doubling in maize crop.


Assuntos
Cafeína , Zea mays , Humanos , Haploidia , Zea mays/genética , Cafeína/farmacologia , Colchicina/farmacologia , Paclitaxel/farmacologia , Melhoramento Vegetal , Cromossomos de Plantas/genética
9.
Molecules ; 28(24)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38138636

RESUMO

Urinary tract infection is an infectious disease that requires immediate treatment. It can occur in any age group and involves both genders equally. The present study was to check the resistance of some antibiotics and to assess the antibacterial potential of three extracts of three plants against notorious bacteria involved in urinary tract infections. Along with assessing the antibacterial activity of plant extracts, we checked for the anticancer potential of these extracts against the cancer cell lines MCF-7 and A2780. Cancer is the leading cause of mortality in developed countries. Determinations of total flavonoid content, total phenolic content, total alkaloid content, total tannin content, total carotenoid content, and total steroid content were performed. The disk diffusion method was used to analyze the antibacterial activity of plant extracts. Ethanolic extract of Selenicereus undatus showed sensitivity (25-28 mm) against bacteria, whereas chloroform and hexane extracts showed resistance against all bacteria except Staphylococcus (25 mm). Ethanolic extract of Pistacia vera L. showed sensitivity (22-25 mm) against bacteria, whereas chloroform and hexane extracts showed resistance. Ethanolic extract of Olea europaea L. showed sensitivity (8-16 mm) against all bacteria except Staphylococcus, whereas chloroform and hexane extracts showed resistance. Positive controls showed variable zones of inhibition (2-60 mm), and negative control showed 0-1 mm. The antibiotic resistance was much more prominent in the case of hexane and chloroform extracts of all plants, whereas ethanolic extract showed a sensitivity of bacteria against extracts. Both cell lines, MCF-7 and A2780, displayed decreased live cells when treated with plant extracts.


Assuntos
Olea , Neoplasias Ovarianas , Pistacia , Masculino , Feminino , Humanos , Hexanos , Linhagem Celular Tumoral , Células MCF-7 , Clorofórmio , Antibacterianos/farmacologia , Extratos Vegetais/farmacologia , Staphylococcus , Bactérias , Testes de Sensibilidade Microbiana
10.
Molecules ; 28(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37764510

RESUMO

Plants are constantly exposed to various phytopathogens such as fungi, Oomycetes, nematodes, bacteria, and viruses. These pathogens can significantly reduce the productivity of important crops worldwide, with annual crop yield losses ranging from 20% to 40% caused by various pathogenic diseases. While the use of chemical pesticides has been effective at controlling multiple diseases in major crops, excessive use of synthetic chemicals has detrimental effects on the environment and human health, which discourages pesticide application in the agriculture sector. As a result, researchers worldwide have shifted their focus towards alternative eco-friendly strategies to prevent plant diseases. Biocontrol of phytopathogens is a less toxic and safer method that reduces the severity of various crop diseases. A variety of biological control agents (BCAs) are available for use, but further research is needed to identify potential microbes and their natural products with a broad-spectrum antagonistic activity to control crop diseases. This review aims to highlight the importance of biocontrol strategies for managing crop diseases. Furthermore, the role of beneficial microbes in controlling plant diseases and the current status of their biocontrol mechanisms will be summarized. The review will also cover the challenges and the need for the future development of biocontrol methods to ensure efficient crop disease management for sustainable agriculture.


Assuntos
Nematoides , Praguicidas , Animais , Humanos , Produtos Agrícolas , Bactérias , Agricultura , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
11.
Environ Monit Assess ; 195(9): 1047, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37589892

RESUMO

Lead (Pb) is a non-essential metal with high toxicity, is persistent, is not biodegradable, and has no known biological function. It is responsible for severe health and environmental issues that need appropriate remediation. Therefore, microbes have thrived in a lead-contaminated environment without exhibiting any negative impacts. The present study aimed to examine the toxic effects of lead on animals and the isolation, identification, and characterization of lead-resistant bacterial strains and their biodegradation potential. After oral administration of lead for 4 weeks, mice showed an elevated level of leukocytes and a decrease in TEC, Hb, PCV, MCV, MCH, and MCHC levels. However, a decline in body weight and inflammation and oxidative stress was observed in liver tissues. To remediate toxic heavy metal, lead-resistant bacterial strains were isolated, among which Enterobacter exhibited maximum degradation potential at high lead concentrations. It was identified by molecular basis and after 16S rRNA sequencing, and 99% resemblance was observed with Enterobacter cloacae. FT-IR analysis of the bacteria illustrated the presence of functional groups, including hydroxyl, carboxyl group, sulfide, and amino groups, on the bacterial cell surface involved in the adsorption of lead. Moreover, electron microscopy (SEM) revealed the morphological and physiochemical changes in the bacterial cell after biosorption, indicating the interaction of Cu ions with functional groups. To summarize, the findings show the highly toxic effects of lead on animals and humans and its effective biodegradation by the bacterial strains in the lead-contaminated environment. This biological strategy can be an ideal alternative to remediate heavy metals from contaminated sites to clean up the environment.


Assuntos
Chumbo , Metais Pesados , Humanos , Animais , Camundongos , Biodegradação Ambiental , RNA Ribossômico 16S , Espectroscopia de Infravermelho com Transformada de Fourier , Monitoramento Ambiental , Metais Pesados/toxicidade
12.
Environ Monit Assess ; 195(7): 825, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37294451

RESUMO

Rapid urbanization and industrialization are regarded as the leading causes of environmental pollution, mainly aquatic pollution. This study was carried out to investigate the use of algal species Cladophora glomerata (CG) and Vaucheria debaryana (VD) as a cost-effective and environmentally friendly phycoremediators for composite industrial effluent. After the pot experimentation using algal species, a considerable decrease in electrical conductivity (EC: 49.10-81.46%), dissolved oxygen (DO: 3.76-8.60%), biological oxygen demand (BOD: 7.81-39.28%), chemical oxygen demand (COD: 7.81-39.28%), total suspended solids (TSS: 38.09-62.21%), and total dissolved solids (TDS: 38.09-62.21%) was observed. Before and after experimentation, the heavy metals were also quantified using atomic absorption spectrophotometry (AAS), and considerable reduction was observed in Cd (41.02-48.75%) and Pb (48.72-57.03%) concentrations. The Cd concentration determined in CTCG (control treatment for Cladophora glomerata containing tap water), CG (treatment pot for Cladophora glomerata containing industrial effluents), CTVD (control pot for Vaucheria debaryana containing tap water), and VD (treatment pot for Vaucheria debaryana containing industrial effluents) biomass was 0.06, 0.499, 0.035, and 0.476 mg/kg, respectively. The Pb uptake determined in CTCG, CG, CTVD, and VD was 0.32, 1.12, 0.31, and 0.49 mg/kg, respectively, using wet digestion method and ASS. The data revealed that C. glomerata has the highest bioconcentration factor for Cd (98.42%), followed by Pb (92.57%) in treatment pots containing industrial effluents (CG and VD). Furthermore, C. glomerata showed the highest bioconcentration factor for Pb (86.49%) as compared to Cd (75%) in tap water (CTCG and CTVD). The t test analysis revealed that heavy metal concentrations significantly (p ≤ 0.05) reduced through the phycoremediation process. The analysis found that C. glomerata removed 48.75% of Cd and 57.027% of Pb from industrial effluents. Phytotoxicity assay was also performed by cultivating Triticum sp. in order to analyze the toxicity of the untreated (control) and treated water samples. Phytotoxicity result shows that the effluent treated with both Cladophora glomerata and Vaucheria debaryana gives better wheat (Triticum sp.) plant % germination, plant height (cm), and root height (cm). The highest plant % germination was showed by treated CTCG (90%), followed by CTVD (80%) and CG (70%) and VD (70%). The study concluded that phycoremediation using C. glomerata and V. debaryana is one of the environment-friendly approaches. The proposed algal-based strategy is economically viable and environmentally sustainable that can be utilized for the remediation of industrial effluents.


Assuntos
Clorófitas , Metais Pesados , Poluentes Químicos da Água , Águas Residuárias , Cádmio/análise , Chumbo/análise , Monitoramento Ambiental , Metais Pesados/análise , Água/análise , Poluentes Químicos da Água/análise
13.
Ecotoxicol Environ Saf ; 233: 113311, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35217307

RESUMO

Grapefruit (Citrus paradisi) is a widely grown citrus and its fruit is affected by a variety of biotic and abiotic stress. Keeping in view the hazardous effects of synthetic fungicides, the recent trend is shifting towards safer and eco-friendly control of fruit diseases. The present study was aimed to diagnose the fruit rot disease of grapefruit and its control by using zinc oxide green nanoparticles (ZnO NPs). Fruit rot symptoms were observed in various grapefruit growing sites of Pakistan. Diseased samples were collected, and the disease-causing pathogen was isolated. Following Koch's postulates, the isolated pathogen was identified as Rhizoctonia solani. For eco-friendly control of this disease, ZnO NPs were prepared in the seed extract of Trachyspermum ammi and characterized. Fourier transform infrared spectroscopy (FTIR) of these NPs described the presence of stabilizing and reducing compounds such as phenols, aldehyde and vinyl ether, especially thymol (phenol). X-ray diffraction (XRD) analysis revealed their crystalline nature and size (48.52 nm). Energy dispersive X-ray (EDX) analysis elaborated the presence of major elements in the samples, while scanning electron microscopy (SEM) confirmed the morphology of bio fabricated NPs. ZnO NPs exhibited very good anti-fungal activity and the most significant fungal growth inhibition was observed at 1.0 mg/ml concentration of green NPs, in vitro and in vivo. These findings described that the bioactive constituents of T. ammi seed extract can effectively reduce and stabilize ZnO NPs. It is a cost-effective method to successfully control the fruit rot disease of grapefruit.


Assuntos
Ammi , Citrus paradisi , Fungicidas Industriais , Nanopartículas Metálicas , Óxido de Zinco , Antibacterianos/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Frutas , Fungicidas Industriais/toxicidade , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Testes de Sensibilidade Microbiana , Nitratos , Extratos Vegetais/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Compostos de Zinco , Óxido de Zinco/química
14.
Int J Mol Sci ; 23(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35162936

RESUMO

Plants are vulnerable to a number of abiotic and biotic stresses that cause a substantial decrease in the production of plants. Plants respond to different environmental stresses by experiencing a series of molecular and physiological changes coordinated by various phytohormones. The use of phytohormones to alleviate stresses has recently achieved increasing interest. Brassinosteroids (BRs) are a group of polyhydroxylated steroidal phytohormones that are required for the development, growth, and productivity of plants. These hormones are involved in regulating the division, elongation, and differentiation of numerous cell types throughout the entire plant life cycle. BR studies have drawn the interest of plant scientists over the last few decades due to their flexible ability to mitigate different environmental stresses. BRs have been shown in numerous studies to have a positive impact on plant responses to various biotic and abiotic stresses. BR receptors detect the BR at the cell surface, triggering a series of phosphorylation events that activate the central transcription factor (TF) Brassinazole-resistant 1 (BZR1), which regulates the transcription of BR-responsive genes in the nucleus. This review discusses the discovery, occurrence, and chemical structure of BRs in plants. Furthermore, their role in the growth and development of plants, and against various stresses, is discussed. Finally, BR signaling in plants is discussed.


Assuntos
Brassinosteroides/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Desenvolvimento Vegetal , Estresse Fisiológico
15.
Int J Mol Sci ; 23(15)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35897765

RESUMO

The plant parasitic nematode, Aphelenchoides besseyi, is a serious pest causing severe damage to various crop plants and vegetables. The Bacillus thuringiensis (Bt) strains, GBAC46 and NMTD81, and the biological strain, FZB42, showed higher nematicidal activity against A. besseyi, by up to 88.80, 82.65, and 75.87%, respectively, in a 96-well plate experiment. We screened the whole genomes of the selected strains by protein-nucleic acid alignment. It was found that the Bt strain GBAC46 showed three novel crystal proteins, namely, Cry31Aa, Cry73Aa, and Cry40ORF, which likely provide for the safe control of nematodes. The Cry31Aa protein was composed of 802 amino acids with a molecular weight of 90.257 kDa and contained a conserved delta-endotoxin insecticidal domain. The Cry31Aa exhibited significant nematicidal activity against A. besseyi with a lethal concentration (LC50) value of 131.80 µg/mL. Furthermore, the results of in vitro experiments (i.e., rhodamine and propidium iodide (PI) experiments) revealed that the Cry31Aa protein was taken up by A. besseyi, which caused damage to the nematode's intestinal cell membrane, indicating that the Cry31Aa produced a pore-formation toxin. In pot experiments, the selected strains GBAC46, NMTD81, and FZB42 significantly reduced the lesions on leaves by up to 33.56%, 45.66, and 30.34% and also enhanced physiological growth parameters such as root length (65.10, 50.65, and 55.60%), shoot length (68.10, 55.60, and 59.45%), and plant fresh weight (60.71, 56.45, and 55.65%), respectively. The number of nematodes obtained from the plants treated with the selected strains (i.e., GBAC46, NMTD81, and FZB42) and A. besseyi was significantly reduced, with 0.56, 0.83., 1.11, and 5.04 seedling mL-1 nematodes were achieved, respectively. Moreover, the qRT-PCR analysis showed that the defense-related genes were upregulated, and the activity of hydrogen peroxide (H2O2) increased while malondialdehyde (MDA) decreased in rice leaves compared to the control. Therefore, it was concluded that the Bt strains GBAC46 and NMTD81 can promote rice growth, induce high expression of rice defense-related genes, and activate systemic resistance in rice. More importantly, the application of the novel Cry31Aa protein has high potential for the efficient and safe prevention and green control of plant parasitic nematodes.


Assuntos
Bacillus thuringiensis , Oryza , Rabditídios , Tylenchida , Animais , Antinematódeos/metabolismo , Antinematódeos/farmacologia , Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/farmacologia , Peróxido de Hidrogênio/metabolismo , Oryza/metabolismo , Plantas/metabolismo , Rabditídios/metabolismo , Tylenchida/metabolismo
16.
Int J Mol Sci ; 23(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35742879

RESUMO

The rhizospheric bacterium Pseudomonas protegens Pf-5 can colonize the seed and root surfaces of plants, and can protect them from pathogen infection. Secondary metabolites, including lipopeptides and polyketides produced by Pf-5, are involved in its biocontrol activity. We isolated a crude extract from Pf-5. It exhibited significant surface activity and strong antibacterial activity against Pantoea ananatis DZ-12, which causes maize brown rot on leaves. HPLC analysis combined with activity tests showed that the polyketide pyoluteorin in the crude extract participated in the suppression of DZ-12 growth, and that the lipopeptide orfamide A was the major biosurfactant in the crude extract. Further studies indicated that the pyoluteorin in the crude extract significantly suppressed the biofilm formation of DZ-12, and it induced the accumulation of reactive oxygen species in DZ-12 cells. Scanning electron microscopy and transmission electron microscopy observation revealed that the crude extract severely damaged the pathogen cells and caused cytoplasmic extravasations and hollowing of the cells. The pathogenicity of DZ-12 on maize leaves was significantly reduced by the crude extract from Pf-5 in a dose-dependent manner. The polyketide pyoluteorin had strong antibacterial activity against DZ-12, and it has the potential for development as an antimicrobial agent.


Assuntos
Pantoea , Policetídeos , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Misturas Complexas , Lipopeptídeos , Fenóis , Pseudomonas , Pirróis , Virulência , Zea mays/metabolismo
17.
Int J Mol Sci ; 22(20)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34681652

RESUMO

Fusarium graminearum is a destructive fungal pathogen that threatens the production and quality of wheat, and controlling this pathogen is a significant challenge. As the cost-effective homolog of melatonin, 5-methoxyindole showed strong activity against F. graminearum. In the present study, our results showed the strong adverse activity of 5-methoxyindole against F. graminearum by inhibiting its growth, formation, and conidia germination. In addition, 5-methoxyindole could induce malformation, reactive oxygen species (ROS) accumulation, and cell death in F. graminearum hyphae and conidia. In response to 5-methoxyindole, F. graminearum genes involved in scavenging reactive oxygen species were significantly downregulated. Overall, these findings reveal the mechanism of antifungal action of melatonin-homolog 5-methoxyindole. To the best of our knowledge, this is the first report that a novel melatonin homolog confers strong antifungal activity against F. graminearum, and 5-methoxyindole is a potential compound for protecting wheat plants from F. graminearum infection.


Assuntos
Fusarium/efeitos dos fármacos , Indóis/farmacologia , Regulação para Baixo/efeitos dos fármacos , Proteínas Fúngicas/genética , Fusarium/crescimento & desenvolvimento , Fusarium/metabolismo , Melatonina/química , Melatonina/farmacologia , Testes de Sensibilidade Microbiana , Espécies Reativas de Oxigênio/metabolismo
18.
Int J Mol Sci ; 22(9)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068779

RESUMO

Bacillus volatiles to control plant nematodes is a topic of great interest among researchers due to its safe and environmentally friendly nature. Bacillus strain GBSC56 isolated from the Tibet region of China showed high nematicidal activity against M. incognita, with 90% mortality as compared with control in a partition plate experiment. Pure volatiles produced by GBSC56 were identified through gas chromatography and mass spectrometry (GC-MS). Among 10 volatile organic compounds (VOCs), 3 volatiles, i.e., dimethyl disulfide (DMDS), methyl isovalerate (MIV), and 2-undecanone (2-UD) showed strong nematicidal activity with a mortality rate of 87%, 83%, and 80%, respectively, against M. incognita. The VOCs induced severe oxidative stress in nematodes, which caused rapid death. Moreover, in the presence of volatiles, the activity of antioxidant enzymes, i.e., SOD, CAT, POD, and APX, was observed to be enhanced in M. incognita-infested roots, which might reduce the adverse effect of oxidative stress-induced after infection. Moreover, genes responsible for plant growth promotion SlCKX1, SlIAA1, and Exp18 showed an upsurge in expression, while AC01 was downregulated in infested plants. Furthermore, the defense-related genes (PR1, PR5, and SlLOX1) in infested tomato plants were upregulated after treatment with MIV and 2-UD. These findings suggest that GBSC56 possesses excellent biocontrol potential against M. incognita. Furthermore, the study provides new insight into the mechanism by which GBSC56 nematicidal volatiles regulate antioxidant enzymes, the key genes involved in plant growth promotion, and the defense mechanism M. incognita-infested tomato plants use to efficiently manage root-knot disease.


Assuntos
Bacillus/genética , Resistência à Doença/genética , Solanum lycopersicum/genética , Tylenchoidea/patogenicidade , Animais , Antinematódeos/metabolismo , Bacillus/metabolismo , China , Cromatografia Gasosa-Espectrometria de Massas , Solanum lycopersicum/microbiologia , Solanum lycopersicum/parasitologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Tylenchoidea/genética , Compostos Orgânicos Voláteis/metabolismo
19.
Int J Mol Sci ; 22(18)2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34576331

RESUMO

Endophytic bacterial communities are beneficial communities for host plants that exist inside the surfaces of plant tissues, and their application improves plant growth. They benefit directly from the host plant by enhancing the nutrient amount of the plant's intake and influencing the phytohormones, which are responsible for growth promotion and stress. Endophytic bacteria play an important role in plant-growth promotion (PGP) by regulating the indirect mechanism targeting pest and pathogens through hydrolytic enzymes, antibiotics, biocontrol potential, and nutrient restriction for pathogens. To attain these benefits, firstly bacterial communities must be colonized by plant tissues. The nature of colonization can be achieved by using a set of traits, including attachment behavior and motility speed, degradation of plant polymers, and plant defense evasion. The diversity of bacterial endophytes colonization depends on various factors, such as plants' relationship with environmental factors. Generally, each endophytic bacteria has a wide host range, and they are used as bio-inoculants in the form of synthetic applications for sustainable agriculture systems and to protect the environment from chemical hazards. This review discusses and explores the taxonomic distribution of endophytic bacteria associated with different genotypes of rice plants and their origin, movement, and mechanism of PGP. In addition, this review accentuates compressive meta data of endophytic bacteria communities associated with different genotypes of rice plants, retrieves their plant-growth-promoting properties and their antagonism against plant pathogens, and discusses the indication of endophytic bacterial flora in rice plant tissues using various methods. The future direction deepens the study of novel endophytic bacterial communities and their identification from rice plants through innovative techniques and their application for sustainable agriculture systems.


Assuntos
Bactérias/patogenicidade , Oryza/microbiologia , Animais , Humanos , Desenvolvimento Vegetal/fisiologia , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA