Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Cell Physiol ; 233(6): 4895-4906, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29194609

RESUMO

Osteoporosis is a common skeletal disorder characterized by low bone mass leading to increased bone fragility and fracture susceptibility. Identification of factors influencing osteoblast differentiation and bone formation is very important. Previously, we identified parbendazole to be a novel compound that stimulates osteogenic differentiation of human mesenchymal stromal cells (hMSCs), using gene expression profiling and bioinformatic analyzes, including the Connectivity Map (CMap), as an in-silico approach. The aim for this paper is to identify additional compounds affecting osteoblast differentiation using the CMap. Gene expression profiling was performed on hMSCs differentiated to osteoblasts using Illumina microarrays. Our osteoblast gene signature, the top regulated genes 6 hr after induction by dexamethasone, was uploaded into CMap (www.broadinstitute.org/cmap/). Through this approach we identified compounds with gene signatures positively correlating (withaferin-A, calcium folinate, amylocaine) or negatively correlating (salbutamol, metaraminol, diprophylline) to our osteoblast gene signature. All positively correlating compounds stimulated osteogenic differentiation, as indicated by increased mineralization compared to control treated cells. One of three negatively correlating compounds, salbutamol, inhibited dexamethasone-induced osteoblastic differentiation, while the other two had no effect. Based on gene expression data of withaferin-A and salbutamol, we identified HMOX1 and STC1 as being strongly differentially expressed . shRNA knockdown of HMOX1 or STC1 in hMSCs inhibited osteoblast differentiation. These results confirm that the CMap is a powerful approach to identify positively compounds that stimulate osteogenesis of hMSCs, and through this approach we can identify genes that play an important role in osteoblast differentiation and could be targets for novel bone anabolic therapies.


Assuntos
Conservadores da Densidade Óssea/farmacologia , Diferenciação Celular/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Densidade Óssea/efeitos dos fármacos , Densidade Óssea/genética , Diferenciação Celular/genética , Biologia Computacional , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Glicoproteínas/genética , Glicoproteínas/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Osteoblastos/metabolismo , Osteogênese/genética , Mapas de Interação de Proteínas , Transdução de Sinais/efeitos dos fármacos
2.
Br J Cancer ; 116(11): 1415-1424, 2017 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-28427087

RESUMO

BACKGROUND: We investigated the predictive value of dihydropyrimidine dehydrogenase (DPD) phenotype, measured as pretreatment serum uracil and dihydrouracil concentrations, for severe as well as fatal fluoropyrimidine-associated toxicity in 550 patients treated previously with fluoropyrimidines during a prospective multicenter study. METHODS: Pretreatment serum concentrations of uracil and dihydrouracil were measured using a validated LC-MS/MS method. The primary endpoint of this analysis was global (any) severe fluoropyrimidine-associated toxicity, that is, grade ⩾3 toxicity according to the NCI CTC-AE v3.0, occurring during the first cycle of treatment. The predictive value of uracil and the uracil/dihydrouracil ratio for early severe fluoropyrimidine-associated toxicity were compared. Pharmacogenetic variants in DPYD (c.2846A>T, c.1679T>G, c.1129-5923C>G, and c.1601G>A) and TYMS (TYMS 5'-UTR VNTR and TYMS 3'-UTR 6-bp ins/del) were measured and tested for associations with severe fluoropyrimidine-associated toxicity to compare predictive value with DPD phenotype. The Benjamini-Hochberg false discovery rate method was used to control for type I errors at level q<0.050 (corresponding to P<0.010). RESULTS: Uracil was superior to the dihydrouracil/uracil ratio as a predictor of severe toxicity. High pretreatment uracil concentrations (>16 ng ml-1) were strongly associated with global severe toxicity (OR 5.3, P=0.009), severe gastrointestinal toxicity (OR 33.7, P<0.0001), toxicity-related hospitalisation (OR 16.9, P<0.0001), as well as fatal treatment-related toxicity (OR 44.8, P=0.001). None of the DPYD variants alone, or TYMS variants alone, were associated with severe toxicity. CONCLUSIONS: High pretreatment uracil concentration was strongly predictive of severe, including fatal, fluoropyrimidine-associated toxicity, and is a highly promising phenotypic marker to identify patients at risk of severe fluoropyrimidine-associated toxicity.


Assuntos
Antimetabólitos Antineoplásicos/efeitos adversos , Capecitabina/efeitos adversos , Di-Hidrouracila Desidrogenase (NADP)/genética , Fluoruracila/efeitos adversos , Neoplasias/tratamento farmacológico , Timidilato Sintase/genética , Uracila/análogos & derivados , Uracila/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Biomarcadores/sangue , Capecitabina/metabolismo , Deficiência da Di-Hidropirimidina Desidrogenase/complicações , Deficiência da Di-Hidropirimidina Desidrogenase/genética , Di-Hidrouracila Desidrogenase (NADP)/metabolismo , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/genética , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/mortalidade , Feminino , Fluoruracila/metabolismo , Genótipo , Hospitalização , Humanos , Leucócitos Mononucleares/enzimologia , Masculino , Pessoa de Meia-Idade , Neoplasias/sangue , Testes Farmacogenômicos , Variantes Farmacogenômicos , Fenótipo , Valor Preditivo dos Testes , Estudos Prospectivos , Timidilato Sintase/metabolismo , Adulto Jovem
3.
Int J Cancer ; 138(1): 245-53, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26189437

RESUMO

The fluoropyrimidines act by inhibiting thymidylate synthase (TS). Recent studies have shown that patients' risk of severe fluoropyrimidine-associated toxicity is affected by polymorphisms in the 5'-untranslated region of TYMS, the gene encoding TS. A G>C substitution in the promoter enhancer region of TYMS, rs183205964 (known as the 2RC allele), markedly reduces TS activity in vitro, but its clinical relevance is unknown. We determined rs183205964 in 1605 patients previously enrolled in a prospective multicenter study. Associations between putative low TS expression genotypes (3RC/2RC, 2RG/2RC, and 2RC/2RC) and severe toxicity were investigated using univariable and multivariable logistic regression. Activity of TS and TYMS gene expression were determined in peripheral blood mononuclear cells (PBMCs) of a patient carrying genotype 2RC/2RC and of a control group of healthy individuals. Among 1,605 patients, 28 patients (1.7%) carried the 2RC allele. Twenty patients (1.2%) carried a risk-associated genotype (2RG/2RC, n=13; 3RC/2RC, n=6; and 2RC/2RC, n=1), the eight remaining patients had genotype 3RG/2RC. Early severe toxicity and toxicity-related hospitalization were significantly more frequent in risk-associated genotype carriers (OR 3.0, 95%CI 1.04-8.93, p=0.043 and OR 3.8, 95%CI 1.19-11.9, p=0.024, respectively, in multivariable analysis). The patient with genotype 2RC/2RC was hospitalized twice and had severe febrile neutropenia, diarrhea, and hand-foot syndrome. Baseline TS activity and gene expression in PBMCs of this patient, and a healthy individual with the 2RC allele, were found to be within the normal range. Our study suggests that patients carrying rs183205964 are at strongly increased risk of severe, potentially life-threatening, toxicity when treated with fluoropyrimidines.


Assuntos
Alelos , Antimetabólitos Antineoplásicos/efeitos adversos , Polimorfismo de Nucleotídeo Único , Pirimidinas/efeitos adversos , Sequências de Repetição em Tandem , Timidilato Sintase/genética , Regiões 5' não Traduzidas , Adulto , Idoso , Idoso de 80 Anos ou mais , Antimetabólitos Antineoplásicos/uso terapêutico , Estudos de Casos e Controles , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Fluoruracila/efeitos adversos , Fluoruracila/uso terapêutico , Expressão Gênica , Genótipo , Humanos , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Pirimidinas/uso terapêutico , Timidilato Sintase/antagonistas & inibidores , Adulto Jovem
4.
Cancer Chemother Pharmacol ; 78(4): 875-80, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27544765

RESUMO

PURPOSE: Dihydropyrimidine dehydrogenase (DPD) is a critical determinant of 5-fluorouracil pharmacology, and reduced activity of DPD as a result of deleterious polymorphisms in the gene encoding DPD (DPYD) can result in severe treatment-related toxicity. Dosing recommendations to individualize treatment have been provided for three DPYD variants (DPYD*2A, c.2846A>T, and c.1679T>G). A fourth variant, c.1129-5923C>G/HapB3, has been shown to increase the risk of fluoropyrimidine-associated toxicity, but little is known about the functional effects of this variant. METHODS: By performing a large retrospective screen for DPYD variants, we identified three patients who were homozygous for c.1129-5923C>G/HapB3. We describe their clinical course of treatment and analyzed DPD activity and DPYD gene expression, to provide insight into the phenotypic effects of c.1129-5923C>G/HapB3. RESULTS: DPD activity could be measured in two patients and was 4.1 and 5.4 nmol/mg/h (DPD activity 41 and 55 % compared to controls, respectively). The fluoropyrimidine dose had to be reduced during treatment in both patients. In line with partial DPD deficiency in both patients, sequence analysis of DPD cDNA demonstrated a normal-sized (wild type) cDNA fragment of 486 bp, as well as a larger-sized (mutant) 530-bp fragment containing an aberrant 44-bp insertion in intron 10. Patient three tolerated treatment well, but DPD activity measurement was not possible as the patient had deceased at the time of performing the study. CONCLUSIONS: The presented functional and clinical data indicate that the c.1129-5923C>G variant is both functionally and clinically relevant, and support an upfront dose reduction of the fluoropyrimidine starting dose in patients carrying c.1129-5923C>G homozygously.


Assuntos
Antimetabólitos Antineoplásicos/administração & dosagem , Antimetabólitos Antineoplásicos/efeitos adversos , Capecitabina/administração & dosagem , Capecitabina/efeitos adversos , Deficiência da Di-Hidropirimidina Desidrogenase/genética , Di-Hidrouracila Desidrogenase (NADP)/genética , Fluoruracila/administração & dosagem , Fluoruracila/efeitos adversos , Idoso , Antimetabólitos Antineoplásicos/uso terapêutico , Capecitabina/uso terapêutico , DNA Complementar/genética , Feminino , Fluoruracila/uso terapêutico , Expressão Gênica , Variação Genética , Genótipo , Haplótipos , Humanos , Íntrons/genética , Masculino , Pessoa de Meia-Idade , Mutação/genética , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Medicina de Precisão , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA