Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Mol Cell ; 81(17): 3604-3622.e10, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34358447

RESUMO

The transformed state in acute leukemia requires gene regulatory programs involving transcription factors and chromatin modulators. Here, we uncover an IRF8-MEF2D transcriptional circuit as an acute myeloid leukemia (AML)-biased dependency. We discover and characterize the mechanism by which the chromatin "reader" ZMYND8 directly activates IRF8 in parallel with the MYC proto-oncogene through their lineage-specific enhancers. ZMYND8 is essential for AML proliferation in vitro and in vivo and associates with MYC and IRF8 enhancer elements that we define in cell lines and in patient samples. ZMYND8 occupancy at IRF8 and MYC enhancers requires BRD4, a transcription coactivator also necessary for AML proliferation. We show that ZMYND8 binds to the ET domain of BRD4 via its chromatin reader cassette, which in turn is required for proper chromatin occupancy and maintenance of leukemic growth in vivo. Our results rationalize ZMYND8 as a potential therapeutic target for modulating essential transcriptional programs in AML.


Assuntos
Fatores Reguladores de Interferon/metabolismo , Leucemia Mieloide Aguda/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/genética , Cromatina/genética , Elementos Facilitadores Genéticos/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Fatores Reguladores de Interferon/genética , Leucemia Mieloide Aguda/genética , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas/genética , Proto-Oncogene Mas , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética , Proteínas Supressoras de Tumor/genética
2.
Blood ; 139(14): 2198-2211, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-34864916

RESUMO

KMT2A-rearranged (KMT2A-r) infant acute lymphoblastic leukemia (ALL) is a devastating malignancy with a dismal outcome, and younger age at diagnosis is associated with increased risk of relapse. To discover age-specific differences and critical drivers that mediate poor outcome in KMT2A-r ALL, we subjected KMT2A-r leukemias and normal hematopoietic cells from patients of different ages to single-cell multiomics analyses. We uncovered the following critical new insights: leukemia cells from patients <6 months have significantly increased lineage plasticity. Steroid response pathways are downregulated in the most immature blasts from younger patients. We identify a hematopoietic stem and progenitor-like (HSPC-like) population in the blood of younger patients that contains leukemic blasts and form an immunosuppressive signaling circuit with cytotoxic lymphocytes. These observations offer a compelling explanation for the ability of leukemias in young patients to evade chemotherapy and immune-mediated control. Our analysis also revealed preexisting lymphomyeloid primed progenitors and myeloid blasts at initial diagnosis of B-ALL. Tracking of leukemic clones in 2 patients whose leukemia underwent a lineage switch documented the evolution of such clones into frank acute myeloid leukemia (AML). These findings provide critical insights into KMT2A-r ALL and have clinical implications for molecularly targeted and immunotherapy approaches. Beyond infant ALL, our study demonstrates the power of single-cell multiomics to detect tumor intrinsic and extrinsic factors affecting rare but critical subpopulations within a malignant population that ultimately determines patient outcome.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Leucemia-Linfoma Linfoblástico de Células Precursoras , Antineoplásicos/uso terapêutico , Rearranjo Gênico , Humanos , Imunoterapia , Lactente , Leucemia Mieloide Aguda/genética , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
3.
Anticancer Drugs ; 29(9): 847-853, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30157040

RESUMO

Targeting oncogenic signaling pathways by small molecules has emerged as a potential treatment strategy for cancer. reactivation of p53 and induction of tumor cell apoptosis (RITA) is a promising anticancer small molecule that reactivates p53 and induces exclusive apoptosis in tumor cells. Less well appreciated was the possible effect of small molecule RITA on p53-null leukemia cells. In this study, we demonstrated that RITA has potent antileukemic properties against p53-null chronic myeloid leukemia (CML)-derived K562 cells. RITA triggered apoptosis through caspase-9 and caspase-3 activation and poly (ADP-ribose) polymerase cleavage. RITA decreased STAT5 tyrosine phosphorylation, although it did not inhibit phosphorylation of the direct BCR-ABL substrate CrkL. Real-time PCR analysis showed that RITA downregulates antiapoptotic STAT5 target genes Bcl-xL and MCL-1. The downregulation of nuclear factor-κB (NF-κB), as evidenced by inhibition of IκB-α phosphorylation and its degradation, was associated with inhibition of Akt phosphorylation in RITA-treated cells. Furthermore, consistent with the decrease of mRNA levels, protein levels of the nuclear factor-κB-regulated antiapoptotic (cIAP1, XIAP, and Bcl-2) and proliferative (c-Myc) genes were downregulated by RITA in K562 cells. In conclusion, the ability of RITA to inhibit prosurvival signaling pathways in CML cells suggests a potential application of RITA in CML therapeutic protocols.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Furanos/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Regulação para Baixo/efeitos dos fármacos , Humanos , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo
4.
J Appl Clin Med Phys ; 19(3): 268-275, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29707895

RESUMO

The aim of this work was to determine whether conjugation of cultivated choroidal melanoma and Burkitt's lymphoma cells with gold nanoparticles (GNPs) is beneficial for these series of ocular cancer patients. GNPs are radiosensitizers and can sensitize tumors to radiotherapy.This application has been examined in several tumor types, but not in choroidal melanoma. This study shows the results of in vitro study on the choroidal melanoma and also Burkitt's lymphoma cells in the presence of GNPs during continuous gamma irradiation. Cytotoxicity of GNPs were assessed for five different concentrations then cultured melanoma and Burkitt's lymphoma cells were irradiated with a Gamma source in the presence and absence of NPs. Incubation of melanoma cells with GNP concentrations below 100 µg/ml, accompanied by gamma irradiation, increased cell death (P value = 0.016) . In the absence of irradiation, GNPs at these concentrations did not affect cultured melanoma cell metabolism. Reduced cell viability resulted from a significant increase in absorbed energy by the tumor. Moreover, GNP concentrations higher than 200 µg/ml induced cytotoxicity in melanoma cells. Cytotoxicity assay in GNPs-loaded Burkitt's lymphoma cells showed a slight decrease in cell viability at 50 µg/ml and clear cytotoxicity at concentrations higher than 100 µg/ml (P value = 0.035). Concentration and proper injection doses of GNPs in sensitive tissues such as the human eye are important variables yet to be determined.This is the first report of choroidal melanoma dosimetry performed in the presence of GNPs and provides valuable insights into future therapeutic approaches. Further in vitro study with more different sizes and concentrations is needed to determine the optimum size and concentration before any clinical research in this regard.


Assuntos
Neoplasias Oculares/radioterapia , Raios gama , Ouro/química , Linfoma/radioterapia , Melanoma/radioterapia , Nanopartículas Metálicas/administração & dosagem , Radiossensibilizantes/administração & dosagem , Neoplasias Uveais/radioterapia , Braquiterapia , Proliferação de Células/efeitos da radiação , Neoplasias Oculares/patologia , Humanos , Técnicas In Vitro , Linfoma/patologia , Melanoma/patologia , Nanopartículas Metálicas/química , Tolerância a Radiação , Radiossensibilizantes/química , Células Tumorais Cultivadas , Neoplasias Uveais/patologia
5.
Tumour Biol ; 39(6): 1010428317705768, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28631564

RESUMO

Signal transducer and activator of transcription 5 and Akt pathways, implicated in signaling transduction downstream of BCR-ABL, play critical roles in the pathogenesis of chronic myeloid leukemia. Therefore, idenication of novel compounds that modulate the activity of such pathways could be a new approach in the treatment of chronic myeloid leukemia. Previous studies have demonstrated that indole-3-carbinol inhibits the proliferation and induces apoptosis of various tumor cells. However, its anticancer activity against chronic myeloid leukemia cells and the underlying mechanism remain unclear. Our data revealed that indole-3-carbinol promoted mitochondrial apoptosis of chronic myeloid leukemia-derived K562 cells, as evidenced by the activation of caspases and poly (ADP-ribose) polymerase cleavage. Treatment with indole-3-carbinol was found to be associated with a decrease in the cellular levels of phospho-Akt and phospho-signal transducer and activator of transcription 5. In addition, real-time polymerase chain reaction analysis showed that the downregulation of genes is regulated by Akt and signal transducer and activator of transcription 5. We also found that treatment with indole-3-carbinol resulted in the activation of the p38 mitogen-activated protein kinase and reduced expression of human telomerase and c-Myc. Collectively, these results demonstrate that the oncogenic signal transducer and activator of transcription 5/Akt pathway is a cellular target for indole-3-carbinol in chronic myeloid leukemia cells. Thus, this clinically tested natural compound can be a potential candidate in the treatment of chronic myeloid leukemia following confirmation with clinical studies.


Assuntos
Indóis/administração & dosagem , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Proteína Oncogênica v-akt/genética , Fator de Transcrição STAT5/genética , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Humanos , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Proteína Oncogênica v-akt/biossíntese , Fosforilação , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Proteínas Proto-Oncogênicas c-myc/biossíntese , Fator de Transcrição STAT5/biossíntese , Transdução de Sinais/efeitos dos fármacos , Telomerase/biossíntese , Proteínas Quinases p38 Ativadas por Mitógeno/biossíntese , Proteínas Quinases p38 Ativadas por Mitógeno/genética
6.
Clin Cancer Res ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864848

RESUMO

PURPOSE: Retinoblastoma is the most common intraocular malignancy in children. Although new chemotherapeutic approaches have improved ocular salvage rates, novel therapies are required for patients with refractory intraocular and metastatic disease. Chimeric antigen receptor (CAR) T-cells targeting glypican-2 (GPC2) are a potential new therapeutic strategy. EXPERIMENTAL DESIGN: GPC2 expression and its regulation by the E2F1 transcription factor were studied in retinoblastoma patient samples and cellular models. In vitro, we performed functional studies comparing GPC2 CAR T-cells with different co-stimulatory domains (4-1BB and CD28). In vivo, the efficacy of local and systemic administration of GPC2 CAR T-cells were evaluated in intraocular and leptomeningeal human retinoblastoma xenograft models. RESULTS: Retinoblastoma tumors, but not healthy retinal tissues, expressed cell surface GPC2 and this tumor-specific expression was driven by E2F1. GPC2-directed CARs with 4-1BB co-stimulation (GPC2.BBz) were superior to CARs with CD28 stimulatory domains (GPC2.28z), efficiently inducing retinoblastoma cell cytotoxicity and enhancing T-cell proliferation and polyfunctionality. In vivo, GPC2.BBz CARs had enhanced persistence that led to significant tumor regression compared to either control CD19 or GPC2.28z CARs. In intraocular models, GPC2.BBz CAR T-cells efficiently trafficked to tumor-bearing eyes after intravitreal or systemic infusions, significantly prolonging ocular survival. In central nervous system (CNS) retinoblastoma models, intraventricular or systemically administered GPC2.BBz CAR T-cells were activated in retinoblastoma-involved CNS tissues, resulting in robust tumor regression with substantially extended overall mouse survival. CONCLUSIONS: GPC2-directed CAR T-cells are effective against intraocular and CNS metastatic retinoblastomas.

7.
iScience ; 25(10): 105139, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36193052

RESUMO

Transcriptional dysregulation is a prominent feature in leukemia. Here, we systematically surveyed transcription factor (TF) vulnerabilities in leukemia and uncovered TF clusters that exhibit context-specific vulnerabilities within and between different subtypes of leukemia. Among these TF clusters, we demonstrated that acute myeloid leukemia (AML) with high IRF8 expression was addicted to MEF2D. MEF2D and IRF8 form an autoregulatory loop via direct binding to mutual enhancer elements. One important function of this circuit in AML is to sustain PU.1/MEIS1 co-regulated transcriptional outputs via stabilizing PU.1's chromatin occupancy. We illustrated that AML could acquire dependency on this circuit through various oncogenic mechanisms that results in the activation of their enhancers. In addition to forming a circuit, MEF2D and IRF8 can also separately regulate gene expression, and dual perturbation of these two TFs leads to a more robust inhibition of AML proliferation. Collectively, our results revealed a TF circuit essential for AML survival.

8.
Cancer Discov ; 12(11): 2684-2709, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36053276

RESUMO

The chromatin reader eleven-nineteen leukemia (ENL) has been identified as a critical dependency in acute myeloid leukemia (AML), but its therapeutic potential remains unclear. We describe a potent and orally bioavailable small-molecule inhibitor of ENL, TDI-11055, which displaces ENL from chromatin by blocking its YEATS domain interaction with acylated histones. Cell lines and primary patient samples carrying MLL rearrangements or NPM1 mutations are responsive to TDI-11055. A CRISPR-Cas9-mediated mutagenesis screen uncovers an ENL mutation that confers resistance to TDI-11055, validating the compound's on-target activity. TDI-11055 treatment rapidly decreases chromatin occupancy of ENL-associated complexes and impairs transcription elongation, leading to suppression of key oncogenic gene expression programs and induction of differentiation. In vivo treatment with TDI-11055 blocks disease progression in cell line- and patient-derived xenograft models of MLL-rearranged and NPM1-mutated AML. Our results establish ENL displacement from chromatin as a promising epigenetic therapy for molecularly defined AML subsets and support the clinical translation of this approach. SIGNIFICANCE: AML is a poor-prognosis disease for which new therapeutic approaches are desperately needed. We developed an orally bioavailable inhibitor of ENL, demonstrated its potent efficacy in MLL-rearranged and NPM1-mutated AML, and determined its mechanisms of action. These biological and chemical insights will facilitate both basic research and clinical translation. This article is highlighted in the In This Issue feature, p. 2483.


Assuntos
Leucemia Mieloide Aguda , Lisina , Humanos , Leucemia Mieloide Aguda/genética , Histonas/metabolismo , Cromatina , Proteína de Leucina Linfoide-Mieloide/metabolismo
9.
Leukemia ; 35(5): 1405-1417, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33542482

RESUMO

Translocations of Meningioma-1 (MN1) occur in a subset of acute myeloid leukemias (AML) and result in high expression of MN1, either as a full-length protein, or as a fusion protein that includes most of the N-terminus of MN1. High levels of MN1 correlate with poor prognosis. When overexpressed in murine hematopoietic progenitors, MN1 causes an aggressive AML characterized by an aberrant myeloid precursor-like gene expression program that shares features of KMT2A-rearranged (KMT2A-r) leukemia, including high levels of Hoxa and Meis1 gene expression. Compounds that target a critical KMT2A-Menin interaction have proven effective in KMT2A-r leukemia. Here, we demonstrate that Menin (Men1) is also critical for the self-renewal of MN1-driven AML through the maintenance of a distinct gene expression program. Genetic inactivation of Men1 led to a decrease in the number of functional leukemia-initiating cells. Pharmacologic inhibition of the KMT2A-Menin interaction decreased colony-forming activity, induced differentiation programs in MN1-driven murine leukemia and decreased leukemic burden in a human AML xenograft carrying an MN1-ETV6 translocation. Collectively, these results nominate Menin inhibition as a promising therapeutic strategy in MN1-driven leukemia.


Assuntos
Leucemia Mieloide Aguda/genética , Proteínas Proto-Oncogênicas/genética , Transativadores/genética , Proteínas Supressoras de Tumor/genética , Animais , Linhagem Celular Tumoral , Regulação Leucêmica da Expressão Gênica/genética , Células HEK293 , Histona-Lisina N-Metiltransferase/genética , Humanos , Camundongos , Camundongos Knockout
10.
DNA Repair (Amst) ; 96: 102951, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32971475

RESUMO

DNA repair pathways, which are also identified as guardians of the genome, protect cells from frequent damage that can lead to DNA breaks. The most deleterious types of damage are double-strand breaks (DSBs), which are repaired by homologous recombination (HR) and non-homologous end joining (NHEJ). Single strand breaks (SSBs) can be corrected through base excision repair (BER), nucleotide excision repair (NER), and mismatch repair (MMR). Failure to restore DNA lesions or inappropriately repaired DNA damage culminates in genomic instability and changes in the regulation of cellular functions. Intriguingly, particular mutations and translocations are accompanied by special types of leukemia. Besides, expression patterns of certain repair genes are altered in different hematologic malignancies. Moreover, analysis of mutations in key mediators of DNA damage repair (DDR) pathways, as well as investigation of their expression and function, may provide us with emerging biomarkers of response/resistance to treatment. Therefore, defective DDR pathways can offer a rational starting point for developing DNA repair-targeted drugs. In this review, we address genetic alterations and gene/protein expression changes, as well as provide an overview of DNA repair pathways.


Assuntos
Dano ao DNA , Reparo do DNA/genética , Neoplasias Hematológicas/tratamento farmacológico , DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/terapia , Humanos , Prognóstico
11.
Int J Mol Cell Med ; 7(1): 24-31, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30234070

RESUMO

Dysregulated expression of miRNAs can play a vital role in pathogenesis of leukemia. The shortened telomere length, and elevated telomerase activity in acute promyelocytic leukemia cells are mainly indicative of extensive proliferative activity. This study aimed to investigate the effect of overexpression of miR-138 on telomerase activity, and cell proliferation of acute promyelocytic leukemia NB4 cells. MiR-138 was overexpressed in NB4 cells using GFP hsa-miR-138-expressing lentiviruses. hTERT mRNA and protein expression levels were assessed by qRT-PCR and western blot analysis. For evaluation of apoptosis, annexin-V staining and activation of caspases were assessed using flow cytometry and western blot analysis, respectively. Our data demonstrate that overexpression of miR-138 attenuated the hTERT mRNA and protein expression levels. In addition, cell growth was inhibited, and malignant cells underwent caspase mediated-apoptosis in response to miR-138 overexpression. These findings suggest that loss of miR-138 expression may be associated with increased telomerase activity in NB4 cells. Therefore, strategies for up-regulation of miR-138 may result in inhibition of malignant cell growth, and provide a promising therapeutic approach for acute promyelocytic leukemia.

12.
Biomed Pharmacother ; 102: 428-437, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29574283

RESUMO

Activation of the phosphoinositide 3-kinase (PI3K)/Akt/mTOR pathway as a survival signaling cascade is a prominent feature of cancers such as acute lymphoblastic leukemia (ALL). In patients with B-cell precursor-ALL (BCP-ALL), the high activity of the pathway correlates with the weak response to anti-leukemic drugs and relapse as a result of downstream prosurvival pathway activation, such as nuclear factor kappa B (NF-κB). Recent targeted therapy (PI3K/mTOR inhibitors) in combination with a multifunctional conventional chemotherapeutic drug may be useful for treatment of BCP-ALL patients. In the current study, the potential of a subtoxic dose (0.2 µM) of arsenic trioxide (ATO) in combination with VS-5584 (a highly potent PI3K/mTOR dual inhibitor) was tested for blocking of the PI3K/Akt/mTOR pathway, inhibition of NF-κB activation and induction of apoptosis and cell-cycle arrest. The data indicate that VS-5584 as a PI3K/mTOR inhibitor inhibited cell proliferation and induced apoptosis in NALM-6 cells by means of NF-κB transcriptional activity suppression. This apoptotic process markedly increased 72 h after administration of the subtoxic dose of ATO. We also showed that concomitant treatment of VS-5584 and the subtoxic dose of ATO significantly inhibited phosphorylation of NF-κB inhibitor alpha (IκBα) and S6 ribosomal protein (S6) as the downstream proteins of the PI3K/Akt/mTOR pathway. Combining VS-5584 and a subtoxic dose of ATO also resulted in down expression of the NF-κB target genes involved in cell proliferation and survival. These results indicate that incorporation of VS-5584/ATO combination into BCP-ALL therapeutic protocols can improve treatment and the survival of patients.


Assuntos
Apoptose/efeitos dos fármacos , Morfolinas/farmacologia , NF-kappa B/metabolismo , Óxidos/toxicidade , Inibidores de Fosfoinositídeo-3 Quinase , Purinas/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Trióxido de Arsênio , Arsenicais , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Serina-Treonina Quinases TOR/metabolismo
13.
Biomed Pharmacother ; 94: 1077-1093, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28821159

RESUMO

DNA damage repair pathways greatly affect the response to genotoxic drugs in cancer cells, so inhibition of such pathways could be a potentially useful strategy to enhance chemosensitivity. DNA-dependent protein kinase (DNA-PK) plays a crucial role in the repair of DNA double-strand breaks (DSBs) that are probably one of the most detrimental types of DNA damage. It has been shown that DNA-PK is highly expressed in B-cell precursor acute lymphoblastic leukemia (BCP-ALL) cells. Less well appreciated was the effect of DNA-PK inhibition on sensitivity of BCP-ALL cells to DNA-damaging agents. Here, we show that the DNA-PK inhibitor NU7441 increased doxorubicin-induced apoptosis in BCP-ALL cell lines (NALM-6, SUP-B15), correlating with a reduction in DSB repair measured by γ-H2AX foci. NU7441 affected the cell cycle distribution and the cell cycle regulatory molecules in combination with doxorubicin treatment. Doxorubicin-induced DNA-PK phosphorylation was decreased in the presence of NU7441. Apoptosis induction by the combined treatment was associated with marked reduction of Bcl-2 and survivin and a significant increase of Bax mRNA expression levels. In conclusion, our data indicate that inhibition of DNA-PK might be an effective approach to enhance the tumor-cell-killing effects of DNA-damaging agents such as doxorubicin in BCP-ALL and may deliver novel, targeted therapy into the clinic.


Assuntos
Linfócitos B/efeitos dos fármacos , Proteína Quinase Ativada por DNA/metabolismo , Doxorrubicina/farmacologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Proteínas Quinases/metabolismo , Linfócitos B/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cromonas/farmacologia , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Morfolinas/farmacologia , Fosforilação/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Inibidores de Proteínas Quinases/farmacologia
14.
Biomed Pharmacother ; 87: 274-279, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28063408

RESUMO

A majority of acute lymphoblastic leukemia patients overexpress CREB in the bone marrow. However, the functional significance of this up-regulation and the detailed molecular mechanism behind the regulatory effect of CREB on the growth of B-cell precursor acute lymphoblastic leukemia (BCP-ALL) cells has not been elucidated. We demonstrated here that CREB knockdown induced apoptosis and impaired growth of BCP-ALL NALM-6 cells which was associated with caspase activation. The gene expression levels of prosurvival signals Bcl-2, Mcl-1, Bcl-xL, survivin and XIAP were down-regulated upon CREB suppression. These findings indicate a critical role for CREB in proliferation, survival, and apoptosis of BCP-ALL cells. The data also suggest that CREB could possibly serve as potential therapeutic target in BCP-ALL.


Assuntos
Apoptose/fisiologia , Proliferação de Células/fisiologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Sobrevivência Celular/fisiologia , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Transdução de Sinais/fisiologia
15.
Int J Mol Cell Med ; 5(3): 167-177, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27942503

RESUMO

Human umbilical cord matrix (hUCM) is considered as a promising source of mesenchymal stem cells (MSCs) due to several advantages over other tissues. The potential of neural differentiation of hUCM-MSCs is of great interest in the context of treating neurodegenerative diseases. In recent years, considerable efforts have been made to establish in vitro conditions for improving the differentiation of hUCM-MSCs toward neuronal cells. In the present study, we evaluated the neural differentiation potential of hUCM-MSCs in the presence of cAMP-elevating agents forskolin and 3-isobutyl-1-methylxanthine (IBMX). hUCM-MSCs were isolated from fetal umbilical cord and characterized by flow cytometry analysis for mesenchymal specific markers. Mesodermal differentiation potential was assessed through selective media with lineage-specific induction factors. For assessment of neural differentiation, cells were cultured in the presence of cAMP-elevating agents for 8 and 24 h. The neuronal differentiated MSCs were characterized for neuronal specific markers by immunocytochemistry and western blotting. Isolated hUCM-MSCs were found positive for mesenchymal markers (CD73, CD90, and CD105) while negative for hematopoietic markers (CD34 and CD45) .Following neural induction, most cells represented neural-like cells morphology. Neural markers including ß-tubulin III (Tuj-1), neuron-specific enolase (NSE), microtubule-associated protein-2 (MAP-2) and nestin were expressed in treated cells with respect to control group. The astrocyte specific marker, glial fibrillary acidic protein (GFAP) was also shown by immunofluorescence in treated cells. (These findings demonstrate that hUCM-MSCs have the ability to rapidly differentiate into neural cell types of neuron-like cells and astrocytes by cAMP-elevating agents without the presence of growth factors.

16.
Avicenna J Med Biotechnol ; 7(3): 90-6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26306147

RESUMO

BACKGROUND: Mesenchymal Stem Cells (MSCs) are isolated from different sources like placenta. The placenta and its membranes like Amniotic Membrane (AM) are readily available and easy to work with. There is only limited knowledge on the immunomodulatory properties of human Amniotic Membrane-derived Mesenchymal Stem Cells (hAM-MSCs). The aim of this study was to survey the suppressive activity of hAM-MSCs on T lymphocytes in vitro. METHODS: Human AMs were obtained after caesarean section births from healthy women. After enzymatic digestion, cells were cultured and hAM-MSCs were obtained. In addition, human T lymphocytes were isolated and co-cultured with hAM-MSCs for 72 hr in the presence or absence of phytohemagglutinin (PHA). Subsequently, proliferation of T cells was analyzed using BrdU and subsequently flow cytometry technique. Besides, the production of IL-4 and IFN-γ was examined by ELISA method. Additionally, the expression of activation markers (CD38, HLA-DR) was studied on T lymphocytes by flow cytometry technique. RESULTS: It was revealed that hAM-MSCs could significantly suppress the proliferation of T lymphocytes (p≤0.01) and significantly decrease the production of IFN-γ by T cells (p<0.05). hAM-MSCs also down regulated the expression of activation markers on the surface of T lymphocytes, CD38 and HLA-DR. The difference was significant between the case and control samples (p<0.05). All the comparisons were carried out between the case (Tcell+PHA+hAM-MSCs) and control (Tcell+PHA) groups. CONCLUSION: In conclusion, hAM-MSCs could inhibit the (mitogen-activated) T cells even in the absence of blood monocytes. Besides, hAM-MSCs-mediated inhibition of T lymphocytes was combined with down regulation of activation markers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA