Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(11): 110202, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-37001103

RESUMO

The principle of information causality, proposed as a generalization of no signaling principle, has efficiently been applied to outcast beyond quantum correlations as unphysical. In this Letter, we show that this principle, when utilized properly, can provide physical rationale toward structural derivation of multipartite quantum systems. In accordance with the no signaling condition, the state and effect spaces of a composite system can allow different possible mathematical descriptions, even when descriptions for the individual systems are assumed to be quantum. While in one extreme, namely, the maximal tensor product composition, the state space becomes quite exotic and permits composite states that are not allowed in quantum theory, the other extreme-minimal tensor product composition-contains only separable states, and the resulting theory allows only Bell local correlation. As we show, none of these compositions is commensurate with information causality, and hence cannot be the bona-fide description of nature. Information causality therefore promises an information-theoretical derivation of self duality of the state and effect cones for composite quantum systems.

2.
Phys Rev Lett ; 131(3): 030402, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37540858

RESUMO

The quantum battery capacity is introduced in this Letter as a figure of merit that expresses the potential of a quantum system to store and supply energy. It is defined as the difference between the highest and the lowest energy that can be reached by means of the unitary evolution of the system. This function is closely connected to the ergotropy, but it does not depend on the temporary level of energy of the system. The capacity of a quantum battery can be directly linked with the entropy of the battery state, as well as with measures of coherence and entanglement.

3.
Phys Rev Lett ; 129(7): 070601, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36018679

RESUMO

The theory of bipartite entanglement shares profound similarities with thermodynamics. In this Letter we extend this connection to multipartite quantum systems where entanglement appears in different forms with genuine entanglement being the most exotic one. We propose thermodynamic quantities that capture a signature of genuineness in multipartite entangled states. Instead of entropy, these quantities are defined in terms of energy-particularly the difference between global and local extractable works (ergotropies) that can be stored in quantum batteries. Some of these quantities suffice as faithful measures of genuineness and to some extent distinguish different classes of genuinely entangled states. Along with scrutinizing properties of these measures we compare them with the other existing genuine measures, and argue that they can serve the purpose in a better sense. Furthermore, the generality of our approach allows us to define suitable functions of ergotropies capturing the signature of k nonseparability that characterizes qualitatively different manifestations of entanglement in multipartite systems.

4.
Phys Rev Lett ; 128(14): 140401, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35476483

RESUMO

Figuring out the physical rationale behind natural selection of quantum theory is one of the most acclaimed quests in quantum foundational research. This pursuit has inspired several axiomatic initiatives to derive a mathematical formulation of the theory by identifying the general structure of state and effect space of individual systems as well as specifying their composition rules. This generic framework can allow several consistent composition rules for a multipartite system even when state and effect cones of individual subsystems are assumed to be quantum. Nevertheless, for any bipartite system, none of these compositions allows beyond quantum spacelike correlations. In this Letter, we show that such bipartite compositions can admit stronger-than-quantum correlations in the timelike domain and, hence, indicates pragmatically distinct roles carried out by state and effect cones. We discuss consequences of such correlations in a communication task, which accordingly opens up a possibility of testing the actual composition between elementary quanta.

5.
Phys Rev Lett ; 126(21): 210505, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34114859

RESUMO

Ensembles of composite quantum states can exhibit nonlocal behavior in the sense that their optimal discrimination may require global operations. Such an ensemble containing N pairwise orthogonal pure states, however, can always be perfectly distinguished under an adaptive local scheme if (N-1) copies of the state are available. In this Letter, we provide examples of orthonormal bases in two-qubit Hilbert space whose adaptive discrimination require three copies of the state. For this composite system, we analyze multicopy adaptive local distinguishability of orthogonal ensembles in full generality which, in turn, assigns varying nonlocal strength to different such ensembles. We also come up with ensembles whose discrimination under an adaptive separable scheme require less numbers of copies than adaptive local schemes. Our construction finds important application in multipartite secret sharing tasks and indicates toward an intriguing superadditivity phenomenon for locally accessible information.

6.
Phys Rev E ; 102(2-1): 022106, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32942516

RESUMO

In this article, in addition to the characterization of geometrical state spaces for the passive states, an operational approach has been introduced to distinguish them on their charging capabilities of a quantum battery. Unlike the thermal states, the structural instability of passive states assures the existence of a natural number n, for which n+1 copies of the state can charge a quantum battery while n copies cannot. This phenomenon can be presented in an n copy resource-theoretic approach, for which the free states are unable to charge the battery in n copies. Here we have exhibited the single copy scenario explicitly. We also show that general ordering of the passive states on the basis of their charging capabilities is not possible and even the macroscopic entities (viz. energy and entropy) are unable to order them precisely. Interestingly, for some of the passive states, the majorization criterion gives sufficient order to the charging and discharging capabilities. However, the charging capacity for the set of thermal states (for which charging is possible) is directly proportional to their temperature.

7.
Phys Rev E ; 102(1-1): 012145, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32795079

RESUMO

Although entropy is a necessary and sufficient quantity to characterize the order of work content for equal energetic (EE) states in the asymptotic limit, for the finite quantum systems, the relation is not so linear and requires detailed investigation. Toward this, we have considered a resource theoretic framework taking the energy preserving operations (EPOs) as free, to compare the amount of extractable work from two different quantum states. Under the EPO, majorization becomes a necessary criterion for state transformation. It is also shown that the passive-state energy is a concave function, and, for EE states, it becomes proportional to the ergotropy in absolute sense. Invariance of the passive-state energy under unitary action on the given state makes it an entanglement measure for the pure bipartite states. Furthermore, due to the nonadditivity of passive-state energy for the different system Hamiltonians, one can generate Vidal^{'}s monotones which would give the optimal probability for pure entangled state transformation. This measure also quantifies the ergotropic gap which is employed to distinguish some specific classes of three-qubit pure entangled states.

8.
Phys Rev E ; 100(1-1): 012147, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31499776

RESUMO

The strong connection between correlations and quantum thermodynamics raises a natural question about the preparation of correlated quantum states from two copies of a thermal qubit. In this work we study the specific forms of allowed and forbidden bipartite correlations. As a consequence, we extend the result to separable but not absolutely separable class of product states. Preparation of a general form of entanglement from arbitrary thermal qubits is studied and, as an application, we propose a strategy to establish desired entanglement between two distant parties. The threshold temperature to produce entanglement from two copies of a thermal qubit has also been discussed from the resource theoretic perspective, which ensures that the bound on the temperature can be superseded with the help of a resource state. A dimension dependent upper bound on the temperature is derived, below which two copies of any d-dimensional thermal state can be entangled in 2×d dimensions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA