Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Immunol Invest ; 53(2): 160-184, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38031988

RESUMO

Systemic lupus erythematosus (SLE) is an autoimmune disease with an unknown etiology that has widespread clinical and immunological manifestations. Despite the increase in knowledge about the pathogenesis process and the increase in treatment options, however, the treatments fail in half of the cases. Therefore, there is still a need for research on new therapies. Mesenchymal stem cells (MSCs) are powerful regulators of the immune system and can reduce the symptoms of systemic lupus erythematosus. This study aimed to review the mechanisms of immune system modulation by MSCs and the role of these cells in the treatment of SLE. MSCs suppress T lymphocytes through various mechanisms, including the production of transforming growth factor-beta (TGF-B), prostaglandin E2 (PGE2), nitric oxide (NO), and indolamine 2 and 3-oxygenase (IDO). In addition, MSCs inhibit the production of their autoantibodies by inhibiting the differentiation of lymphocytes. The production of autoantibodies against nuclear antigens is an important feature of SLE. On the other hand, MSCs inhibit antigen delivery by antigen-presenting cells (APCs) to T lymphocytes. Studies in animal models have shown the effectiveness of these cells in treating SLE. However, few studies have been performed on the effectiveness of this treatment in humans. It can be expected that new treatment strategies for SLE will be introduced in the future, given the promising results of MSCs application.


Assuntos
Lúpus Eritematoso Sistêmico , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Humanos , Células Cultivadas , Autoanticorpos
2.
Mol Biol Rep ; 51(1): 354, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38400872

RESUMO

BACKGROUND: Type 2 diabetes is characterized by insulin resistance, which manifests mainly in skeletal muscles. SIRT1 has been found to play a role in the insulin signaling pathway. However, the molecular underpinnings of SIRT1's function in palmitate fatty acid-induced apoptosis still need to be better understood. METHODS: In this research, skeletal muscle cells are treated with palmitate to be insulin resistant. It is approached that SIRT1 is downregulated in C2C12 muscle cells during palmitate-induced apoptosis and that activating SIRT1 mitigates this effect. RESULTS: Based on these findings, palmitate-induced apoptosis suppressed mitochondrial biogenesis by lowering PGC-1 expression, while SIRT1 overexpression boosted. The SIRT1 inhibitor sirtinol, on the other hand, decreased mitochondrial biogenesis under the same conditions. This research also shows that ROS levels rise in the conditions necessary for apoptosis induction by palmitate, and ROS inhibitors can mitigate this effect. This work demonstrated that lowering ROS levels by boosting SIRT1 expression inhibited apoptotic induction in skeletal muscle cells. CONCLUSION: This study's findings suggested that SIRT1 can improve insulin resistance in type 2 diabetes by slowing the rate of lipo-apoptosis and boosting mitochondrial biogenesis, among other benefits.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Palmitatos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Linhagem Celular , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Insulina/metabolismo , Apoptose
3.
Mol Biol Rep ; 51(1): 442, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520563

RESUMO

BACKGROUND: Throughout the three trimesters of a typical pregnancy, we looked at changes in the expression of miRNAs and exhausted T lymphocytes for this study. METHODS AND RESULTS: Fifty healthy subjects were included in this study. The frequency of exhausted T lymphocytes was measured in isolated PBMCs using flow cytometry. PD-1, TIM-3, and related miRNAs gene expression were assessed using qRT-PCR. The analyses revealed a significant decline in PD-1 and Tim-3 expression in PBMCs from RPL women (p = 0.0003 and p = 0.001, respectively). In addition, PD-1 and TIM-3 expression increased significantly in the 2nd trimester compared with the 1st trimester of healthy pregnant women (p < 0.0001 and p = 0.0002, respectively). PD-1 and TIM-3 expression was down-regulated in the 3rd trimester compared with the 1st and 2nd trimesters. In the present study, we demonstrated that TIM-3+/CD4+, TIM-3+/CD8+, PD-1+/CD4+, and PD-1+/CD8 + exhausted T lymphocytes increased in the circulation of women in the 2nd trimester compared to the 1st and 3rd trimester. In the 3rd trimester, the expression of miR-16-5p increased significantly (p < 0.0001). miR-125a-3p expression was down and upregulated in 2nd (p < 0.0001) and 3rd (p = 0.0007) trimesters compared to 1st trimester, respectively. This study showed a significant elevation of miR-15a-5p in 3rd trimester compared to 1st trimester of pregnant women (p = 0.0002). CONCLUSIONS: Expression pattern of PD-1 and TIM3 in exhausted T lymphocytes is different not only between normal pregnant and RPL women but also in different trimesters of pregnancy. So, our results showed the role of these markers in the modulation lymphocytes activity in different stages of pregnancy.


Assuntos
MicroRNAs , Gravidez , Humanos , Feminino , MicroRNAs/genética , Gestantes , Receptor Celular 2 do Vírus da Hepatite A/genética , Receptor de Morte Celular Programada 1 , Primeiro Trimestre da Gravidez
4.
J Clin Lab Anal ; 38(3): e25006, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38268233

RESUMO

BACKGROUND: Procalcitonin (PCT) is a critical biomarker that is released in response to bacterial infections and can be used to differentiate the pathogenesis of the infectious process. OBJECTIVE: In this article, we provide an overview of recent advances in PCT biosensors, highlighting different approaches for biosensor construction, different immobilization methods, advantages and roles of different matrices used, analytical performance, and PCT biosensor construction. Also, we will explain PCT biosensors sensible limits of detection (LOD), linearity, and other analytical characteristics. Future prospects for the development of better PCT biosensor systems are also discussed. METHODS: Traditional methods such as capillary electrophoresis, high-performance liquid chromatography, and mass spectrometry are effective in analyzing PCT in the medical field, but they are complicated, time-consuming sample preparation, and require expensive equipment and skilled personnel. RESULTS: In the past decades, PCT biosensors have emerged as simple, fast, and sensitive tools for PCT analysis in various fields, especially medical fields. CONCLUSION: These biosensors have the potential to accompany or replace traditional analytical methods by simplifying or reducing sample preparation and making field testing easier and faster, while significantly reducing the cost per analysis.


Assuntos
Infecções Bacterianas , Técnicas Biossensoriais , Humanos , Pró-Calcitonina , Infecções Bacterianas/diagnóstico , Técnicas Biossensoriais/métodos , Biomarcadores , Limite de Detecção
5.
Cancer Cell Int ; 23(1): 98, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37210528

RESUMO

Glioblastoma (GBM) is an aggressive type of cancer that originates in the cells called astrocytes, which support the functioning of nerve cells. It can develop in either the brain or the spinal cord and is also known as glioblastoma multiform. GBM is a highly aggressive cancer that can occur in either the brain or spinal cord. The detection of GBM in biofluids offers potential advantages over current methods for diagnosing and treatment monitoring of glial tumors. Biofluid-based detection of GBM focuses on identifying tumor-specific biomarkers in blood and cerebrospinal fluid. To date, different methods have been used to detect biomarkers of GBM, ranging from various imaging techniques to molecular approaches. Each method has its own strengths and weaknesses. The present review aims to scrutinize multiple diagnostic methods for GBM, with a focus on proteomics methods and biosensors. In other words, this study aims to provide an overview of the most significant research findings based on proteomics and biosensors for the diagnosis of GBM.

6.
Arch Environ Contam Toxicol ; 84(3): 347-367, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37039904

RESUMO

In the present study, the researchers used an integrated approach composed of response surface analysis (RSM) and MPACT model to predict fatality rates caused by benzene emitted from floating-roof tanks. RSM scenarios were configured in Expert Design (version 7.0) software using the central composite design (CCD) method and five variables of wind speed, relative humidity, atmospheric temperature, failure diameter, and emission height were considered. Continuous Pasquill-Gifford Gaussian model was used to estimate the results of the RSM scenarios. The response values were considered for exposure concentrations above 50 ppm (slight damages), 150 ppm (moderate damage), and 1000 ppm (high damage). The analysis of individual and social risks for each scenario was done using the MPACT model in SAFETI program (version 8.22) by providing two variables of population characteristics and the frequency of tank wall failure. The results showed that atmospheric temperature, wind speed, failure diameter, and emission height have positive effects on the dispersion of the cloud of toxic benzene vapor with a concentration of 1000 ppm. Intolerable individual risk distances were estimated to be lower for indoor environments than for outdoor. Maximum distances of intolerable individual risks for the worst-case scenarios were estimated up to 2500 m from the emission point, which resulted from exposure to a concentration of 1000-ppm benzene. Results regarding the estimation of social risks showed that over 1600 fatalities should be expected under the worst-case scenarios. The three factors of high temperature, low wind speed, and low emission height play a major role in the occurrence of scenarios with the highest fatalities. High wind speed and high emission height were the most important factors in most scenarios with zero fatalities rate. Generally, the findings of this study show the necessity to provide an emergency response plan in the studied industry in both autumn and winter due to low wind speed. However, the coupling of the developed statistical models based on regional meteorological conditions with the MPACT model can help researchers to design an emergency response plan to deal with leakage incidents in petrochemical industries.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Benzeno/análise , Vento , Estações do Ano
7.
Cancer Cell Int ; 22(1): 274, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064406

RESUMO

Recent advances in omics technology have prompted extraordinary attempts to define the molecular changes underlying the onset and progression of a variety of complex human diseases, including cancer. Since the advent of sequencing technology, cancer biology has become increasingly reliant on the generation and integration of data generated at these levels. The availability of multi-omic data has transformed medicine and biology by enabling integrated systems-level approaches. Multivariate signatures are expected to play a role in cancer detection, screening, patient classification, assessment of treatment response, and biomarker identification. This review reports current findings and highlights a number of studies that are both novel and groundbreaking in their application of multi Omics to prostate cancer.

8.
Reprod Biol Endocrinol ; 19(1): 104, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34233693

RESUMO

Structural and physiological changes in sperm and semen parameters reduce fertility in diabetic patients. Securigera Securidaca (S. Securidaca) seed is a herbal medicine with hypoglycemic, antioxidant, and anti-hypertensive effects. The question now is whether this herbal medicine improves fertility in diabetic males. The study aimed to evaluate the effects of hydroalcoholic extract of S. Securidaca seeds (HESS), glibenclamide and a combination of both on fertility in hyperglycemic rats by comparing histological and some biochemical changes in testicular tissue and sperm parameters. The treatment protocol included administration of three doses of HESS and one dose of glibenclamide, as well as treatment with both in diabetic Wistar diabetic rats and comparison of the results with untrated groups. The quality of the testicular tissue as well as histometric parameters and spermatogenesis indices were evaluated during histopathological examination. Epididymal sperm analysis including sperm motility, viability, abnormalities, maturity, and chromatin structure were studied. The effect of HESS on the expression of LDH and FGF21 genes and tissue levels of glycogen, lactate, and total antioxidant capacity in testicular tissue was investigated and compared with glibenclamide. HESS improved sperm parameters in diabetic rats but showed little restorative effect on damaged testicular tissue. In this regard, glibenclamide was more effective than the highest dose of HESS and its combination with HESS enhanced its effectiveness so that histological tissue characteristics and sperm parameters were were comparable to those of healthy rats. The expression level of testicular FGF21 gene increased in diabetic rats, which intensified after treatment with HESS as well as glibenclamide. The combination of HESS and glibenclamide restored the expression level of testicular LDH gene, as well as tissue storage of glycogen, lactate and LDH activity, and serum testosterone to the levels near healthy control. S. Securidaca seeds can be considered as an effective supplement in combination with hypoglycemic drugs to prevent infertility complications in diabetes.


Assuntos
Fatores de Crescimento de Fibroblastos/biossíntese , Glibureto/administração & dosagem , Glicogênio/metabolismo , Hiperglicemia/metabolismo , L-Lactato Desidrogenase/biossíntese , Securidaca , Espermatozoides/metabolismo , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Quimioterapia Combinada , Etanol , Expressão Gênica , Hiperglicemia/tratamento farmacológico , Masculino , Extratos Vegetais/administração & dosagem , Extratos Vegetais/isolamento & purificação , Ratos , Ratos Wistar , Sementes , Testículo/efeitos dos fármacos , Testículo/metabolismo , Água
9.
Clin Mol Allergy ; 19(1): 21, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34749737

RESUMO

The concern of today's communities is to find a way to prevent or treat COVID-19 and reduce its symptoms in the patients. However, the genetic mutations and more resistant strains of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerge; the designed vaccines and adjuvant therapies would potentially control the symptoms and severity of COVID-19. The most important complication of this viral infection is acute respiratory distress syndrome, which occurs due to the infiltration of leukocytes into the alveoli and the raised cytokine storm. Interferons, as a cytokine family in the host, play an important role in the immune-related antiviral defense and have been considered in the treatment protocols of COVID-19. In addition, it has been indicated that some nutrients, including vitamin D, magnesium and zinc are essential in the modulation of the immune system and interferon (IFN) signaling pathway. Several recent studies have investigated the treatment effect of vitamin D on COVID-19 and reported the association between optimal levels of this vitamin and reduced disease risk. In the present study, the synergistic action of vitamin D, magnesium and zinc in IFN signaling is discussed as a treatment option for COVID-19 involvement.

10.
BMC Med Genet ; 21(1): 33, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-32059713

RESUMO

BACKGROUND: Tudor domain-containing proteins (TDRDs) play a critical role in piRNA biogenesis and germ cell development. piRNAs, small regulatory RNAs, act by silencing of transposons during germline development and it has recently been shown in animal model studies that defects in TDRD genes can lead to sterility in males. METHODS: Here we evaluate gene and protein expression levels of four key TDRDs (TDRD1, TDRD5, TDRD9 and TDRD12) in testicular biopsy samples obtained from men with obstructive azoospermia (OA, n = 29), as controls, and various types of non-obstructive azoospermia containing hypospermatogenesis (HP, 28), maturation arrest (MA, n = 30), and Sertoli cell-only syndrome (SCOS, n = 32) as cases. One-way ANOVA test followed by Dunnett's multiple comparison post-test was used to determine inter-group differences in TDRD gene expression among cases and controls. RESULTS: The results showed very low expression of TDRD genes in SCOS specimens. Also, the expression of TDRD1 and TDRD9 genes were lower in MA samples compared to OA samples. The expression of TDRD5 significantly reduced in SCOS, MA and HP specimens than the OA specimens. Indeed, TDRD12 exhibited a very low expression in HP specimens in comparison to OA specimens. All these results were confirmed by Western blot technique. CONCLUSION: TDRDs could be very important in male infertility, which should be express in certain stages of spermatogenesis.


Assuntos
Azoospermia/genética , Proteínas de Ciclo Celular/genética , DNA Helicases/genética , Infertilidade Masculina/genética , Adulto , Animais , Azoospermia/patologia , Regulação da Expressão Gênica/genética , Humanos , Infertilidade Masculina/patologia , Masculino , RNA Interferente Pequeno/genética , Espermatogênese/genética , Testículo/crescimento & desenvolvimento , Testículo/metabolismo , Testículo/patologia
11.
COPD ; 17(3): 333-342, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32558592

RESUMO

Chronic obstructive pulmonary disease (COPD) that is one of the most prevalent chronic adult diseases and the third leading cause of fatality until 2020. Elastase/anti-elastase hypothesis, chronic inflammation, apoptosis, oxidant-antioxidant balance and infective repair cause pathogenesis of COPD are among the factors at play. Epigenetic changes are post-translational modifications in histone proteins and DNA such as methylation and acetylation as well as dysregulation of miRNAs expression. In this update review, we have examined recent studies on the upregulation or downregulation of methylation in different genes associated with COPD. Dysregulation of HDAC activity which is caused by some factors and miRNAs plays a key role in the suppression and reduction of COPD development. Also, some therapeutic approaches are proposed against COPD by targeting HDAC2 and miRNAs, which have therapeutic effects.


Assuntos
Epigênese Genética , Expressão Gênica , Histona Desacetilase 2/metabolismo , MicroRNAs/genética , Doença Pulmonar Obstrutiva Crônica/genética , Metilação de DNA/genética , Código das Histonas/genética , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Terapia de Alvo Molecular , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/metabolismo
12.
Mediators Inflamm ; 2019: 3560819, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30863203

RESUMO

One of the major mechanisms of hyperglycemia in type 2 diabetes is insulin resistance (IR) which can induce free fatty acids like palmitate. In hepatic cell, as an insulin target tissue, insulin resistance can be stimulated by inflammatory cytokine TNF-α. The interaction of intracellular TNF-α signal with the insulin signaling pathway is not well identified. Hence, we aimed to investigate the effect of TNF-α elimination on the diabetic model of palmitate-induced insulin-resistant hepatocytes (HepG2). The changes of phosphorylation rate in IRS-1 protein are determined to know the effect of TNF-α on this key protein of the insulin signaling pathway. HepG2 cells were treated with 0.5 Mm palmitate, and TNF-α gene knockdown was performed by shRNA-mediated technique. Western blot analysis was used to evaluate the phosphorylated activity of the insulin signaling pathway. Palmitate-induced IR could increase TNF-α protein expression 1.2-, 2.78-, and 2.25-fold compared to the control cells at times of 8 h, 16 h, and 24 h, respectively. TNF-α expression in downregulated cells transfected with shRNA-TNF-α is approximately 47.0% of normal cells and 49.0% in the case of scrambled cells. IRS-1 phosphorylation in TNF-α-downregulated and stimulated cells with 100 nM insulin, after treatment and in the absence of palmitate, was 45% and 29% higher than the normal cells. These data support the evidence that TNF-α downregulation strategy contributes to the improvement of IRS-1 phosphorylation after insulin stimulation and insulin response in HepG2 liver cells.


Assuntos
Hepatócitos/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Western Blotting , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Células Hep G2 , Humanos , Proteínas Substratos do Receptor de Insulina/genética , Resistência à Insulina/genética , Resistência à Insulina/fisiologia , Palmitatos/farmacologia , Fosforilação , Fator de Necrose Tumoral alfa/genética
13.
Naunyn Schmiedebergs Arch Pharmacol ; 397(8): 6121-6133, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38421409

RESUMO

Unlike breast and prostate cancers, which are specifically affected by estrogens or androgens, hepatocellular carcinoma has been reported to be influenced by both sex hormones. Given the coincidental differences of hepatocellular carcinoma in men and women, we investigated the effects of ß-estradiol and testosterone on the cell cycle, apoptosis, and Wnt signaling in a model of hepatocellular carcinoma to understand the sex hormone-related etiology. To determine the effective concentration of both hormones, an MTT assay was performed. The effects of ß-estradiol and testosterone on cell proliferation and death were evaluated by specific staining and flow cytometry. In addition, gene expression levels of estimated factors involved in GPC3-Wnt survival signaling were analyzed using quantitative real-time polymerase chain reaction. Both hormones inhibited hepatic cell proliferation through arresting the cell cycle at S/G2 and increased the apoptosis rate in HepG2 cells. Both hormones dose-dependently decreased GPC3, Wnt, and DVL expression levels as activators of the Wnt-signaling pathway. In the case of Wnt-signaling inhibitors, the effects of both hormones on WIF were negligible, but they increased DKK1 levels in a dose-dependent manner. In each of the effects mentioned above, ß-estradiol was notably more potent than testosterone. In contrast to the primary hypothesis of the project, in which testosterone was considered a stimulating carcinogenic factor in HCC pathogenesis, testosterone inhibited the occurrence of HCC similarly to ß-estradiol. However, this inhibitory effect was weaker than that of ß-estradiol and requires further study.


Assuntos
Apoptose , Carcinoma Hepatocelular , Ciclo Celular , Proliferação de Células , Estradiol , Neoplasias Hepáticas , Testosterona , Via de Sinalização Wnt , Humanos , Testosterona/farmacologia , Testosterona/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/tratamento farmacológico , Apoptose/efeitos dos fármacos , Células Hep G2 , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/tratamento farmacológico , Estradiol/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos
14.
Enzyme Microb Technol ; 174: 110380, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38147783

RESUMO

Sepsis is a serious disease caused by an impaired host immune response to infection, resulting in organ dysfunction, tissue damage and is responsible for high in-hospital mortality (approximately 20%). Recently, WHO documented sepsis as a global health priority. Nevertheless, there is still no effective and specific therapy for clinically detecting sepsis. Nanomaterial-based approaches have appeared as promising tools for identifying bacterial infections. In this review, recent biosensors are introduced and summarized as nanomaterial-based platforms for sepsis management and severe complications. Biosensors can be used as tools for the diagnosis and treatment of sepsis and as nanocarriers for drug delivery. In general, diagnostic methods for sepsis-associated bacteria, biosensors developed for this purpose are presented in detail, and their strengths and weaknesses are discussed. In other words, readers of this article will gain a comprehensive understanding of biosensors and their applications in sepsis management.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Sepse , Humanos , Sepse/diagnóstico , Sepse/tratamento farmacológico , Nanoestruturas/uso terapêutico , Técnicas Biossensoriais/métodos
15.
J Clin Tuberc Other Mycobact Dis ; 34: 100412, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38222862

RESUMO

Diagnosis of Mycobacterium tuberculosis (Mtb) before the progression of pulmonary infection can be very effective in its early treatment. The Mtb grows so slowly that it takes about 6-8 weeks to be diagnosed even using sensitive cell culture methods. The main opponent in tuberculosis (TB) and nontuberculous mycobacterial (NTM) epidemiology, like in all contagious diseases, is to pinpoint the source of infection and reveal its transmission and dispersion ways in the environment. It is crucial to be able to distinguish and monitor specific mycobacterium strains in order to do this. In food analysis, clinical diagnosis, environmental monitoring, and bioprocess, biosensing technologies have been improved to manage and detect Mtb. Biosensors are progressively being considered pioneering tools for point-of-care diagnostics in Mtb discoveries. In this review, we present an epitome of recent developments of biosensing technologies for M. tuberculosis detection, which are categorized on the basis of types of electrochemical, Fluorescent, Photo-thermal, Lateral Flow, Magneto-resistive, Laser, Plasmonic, and Optic biosensors.

16.
Naunyn Schmiedebergs Arch Pharmacol ; 397(4): 2507-2522, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-37855932

RESUMO

Since the role of Nrf2 in cancer cell survival has been highlighted, the pharmacological modulation of the Nrf2-Keap1 pathway may provide new opportunities for cancer treatment. This study purposed to use ubiquinone (Q10) as an antioxidant and catharanthine alkaloid as a cAMP inducer suppressing HepG2 cells by reducing Nrf2 level. The effects of Q10 and catharanthine on HepG2 cells in terms of viability were analyzed by MTT test. MTT results were used to determine the effective concentration of both drugs for the subsequent treatment and analysis. Subsequently, the effects of Q10 and catharanthine in a single and combined manner on oxidant/antioxidant status, apoptosis, metastasis, and drug resistance of HepG2 cells were investigated by related methods. Both Q10 and catharanthine decreased the level of oxidative stress products and increased antioxidant capacity in HepG2 cells. Nrf2 gene expression decreased by Q10, but catharanthine unexpectedly increased it. Following Nrf2 alterations, the expression levels of MMP-9 and MRP1 involved in metastasis and drug resistance were significantly and dose-dependently decreased by Q10, while catharanthine slightly increased both. However, both drugs increased caspase 3/7 activity and apoptosis rate, and the effect of Q10 on apoptosis was stronger than that of catharanthine. Most of the effects of the combination treatments were similar to those of the Q10 single treatment and indicated the dominant effect over the catharanthine component. Despite the antioxidant and apoptotic properties of both agents, Q10 was better than catharanthine in inducing apoptosis, counteracting drug resistance, and metastasis in HepG2 cells.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Alcaloides de Vinca , Humanos , Antioxidantes/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Estresse Oxidativo , Células Hep G2 , Apoptose
17.
Top Curr Chem (Cham) ; 382(3): 23, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965117

RESUMO

In recent years, there has been a notable increase in the scientific community's interest in rational protein design. The prospect of designing an amino acid sequence that can reliably fold into a desired three-dimensional structure and exhibit the intended function is captivating. However, a major challenge in this endeavor lies in accurately predicting the resulting protein structure. The exponential growth of protein databases has fueled the advancement of the field, while newly developed algorithms have pushed the boundaries of what was previously achievable in structure prediction. In particular, using deep learning methods instead of brute force approaches has emerged as a faster and more accurate strategy. These deep-learning techniques leverage the vast amount of data available in protein databases to extract meaningful patterns and predict protein structures with improved precision. In this article, we explore the recent developments in the field of protein structure prediction. We delve into the newly developed methods that leverage deep learning approaches, highlighting their significance and potential for advancing our understanding of protein design.


Assuntos
Aprendizado Profundo , Conformação Proteica , Proteínas , Proteínas/química , Proteínas/metabolismo , Bases de Dados de Proteínas , Algoritmos
18.
Endocrinol Diabetes Metab ; 7(5): e515, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39238175

RESUMO

AIM: In previous studies, the researchers observed an increase in insulin secretion in STZ-treated diabetic rats following treatment with the hydroalcoholic extract of Securigera securidaca (HESS) seeds. This study focuses on the relationship between the antioxidant properties of HESS with changes in diabetic pancreatic tissue and the gene expression of factors that impact insulin secretion. METHODS: In this controlled experimental study, three varying doses of HESS were administered to three groups of diabetic rats induced by STZ. Oxidative stress indicators like total antioxidant capacity (TAC), total oxidant status (TOS) and malondialdehyde were assessed in both pancreatic and liver tissues. Pancreatic histology was studied post-haematoxylin staining. Insulin and FGF21 levels in the blood were measured using the ELISA method. The expression of Nrf2 and FGF21 genes in the pancreas and liver, along with MafA and PDX-1 genes in the pancreas, was quantified using real-time PCR. RESULTS: The administration of HESS in varying doses led to a dose-dependent rise in blood insulin levels and a decrease in blood glucose levels and oxidative stress. By reducing oxidative stress, HESS treatment lowered the heightened levels of NRF2 and FGF21 in the liver and pancreas of diabetic rats, improving pancreatic tissue health. As oxidative stress decreased, the expression of MafA and PDX1 genes in the pancreas approached levels seen in healthy rats. CONCLUSION: HESS elicits an increase in insulin secretion through the mitigation of oxidative stress and tissue damage, as well as the modulation of gene expression related to the insulin transcription factors PDX-1 and MafA.


Assuntos
Diabetes Mellitus Experimental , Secreção de Insulina , Insulina , Extratos Vegetais , Sementes , Regulação para Cima , Animais , Extratos Vegetais/farmacologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Ratos , Sementes/química , Secreção de Insulina/efeitos dos fármacos , Insulina/metabolismo , Masculino , Securidaca , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Fator 2 Relacionado a NF-E2/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Pâncreas/metabolismo , Pâncreas/patologia , Antioxidantes/farmacologia , Fígado/metabolismo , Transativadores , Proteínas de Homeodomínio
19.
Inflammation ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39093342

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairments in social communication and behavior, frequently accompanied by restricted and repetitive patterns of interests or activities. The gut microbiota has been implicated in the etiology of ASD due to its impact on the bidirectional communication pathway known as the gut-brain axis. However, the precise involvement of the gut microbiota in the causation of ASD is unclear. This study critically examines recent evidence to rationalize a probable mechanism in which gut microbiota symbiosis can induce neuroinflammation through intermediator cytokines and metabolites. To develop ASD, loss of the integrity of the intestinal barrier, activation of microglia, and dysregulation of neurotransmitters are caused by neural inflammatory factors. It has emphasized the potential role of neuroinflammatory intermediates linked to gut microbiota alterations in individuals with ASD. Specifically, cytokines like brain-derived neurotrophic factor, calprotectin, eotaxin, and some metabolites and microRNAs have been considered etiological biomarkers. We have also overviewed how probiotic trials may be used as a therapeutic strategy in ASD to reestablish a healthy balance in the gut microbiota. Evidence indicates neuroinflammation induced by dysregulated gut microbiota in ASD, yet there is little clarity based on analysis of the circulating immune profile. It deems the repair of microbiota load would lower inflammatory chaos in the GI tract, correct neuroinflammatory mediators, and modulate the neurotransmitters to attenuate autism. The interaction between the gut and the brain, along with alterations in microbiota and neuroinflammatory biomarkers, serves as a foundational background for understanding the etiology, diagnosis, prognosis, and treatment of autism spectrum disorder.

20.
Artigo em Inglês | MEDLINE | ID: mdl-38856913

RESUMO

Catharanthine, a component of the anticancer drug vinblastine along with vindoline, disrupts the cell cycle by interfering with mitotic spindle formation. Apart from their antioxidant properties, vinca alkaloids like catharanthine inhibit phosphodiesterase activity and elevate intracellular cAMP levels. The aim of this study was to investigate how catharantine affects apoptosis and autophagy. This study conducted experiments on HepG2 liver carcinoma cells with varying doses of catharanthine to evaluate cell death rates and viability and determine the IC50 concentration via MTT assays. The apoptotic and autophagic effects of catharanthine were assessed using flow cytometry with annexin V and PI staining, while the expression of autophagy-related genes was analyzed through quantitative PCR. Additionally, molecular docking and molecular dynamics simulations were employed to further investigate catharanthine's impact on autophagy mechanisms. The study showed that catharanthine reduced oxidative stress and triggered apoptosis in HepG2 cells in a dose-dependent manner. Catharanthine also upregulated the expression of autophagy-related genes like LC3, Beclin1, and ULK1. Notably, catharanthine increased sirtuin-1 levels, a known autophagy inducer, while decreasing Akt expression compared to untreated cells. Molecular docking results indicated rapamycin had a stronger binding affinity with FRB (-10.7 KJ/mol-1) than catharanthine (-7.3 KJ/mol-1). Additionally, molecular dynamics simulations revealed that catharanthine interacted effectively with the FRB domain of mTOR, displaying stability and a strong binding affinity, although not as potent as rapamycin. In summary, besides its cytotoxic and pro-apoptotic effects, catharanthine activates autophagy signaling pathways and induces autophagic necrosis by inhibiting mTOR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA