Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Plant Physiol ; 187(3): 1481-1500, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34618065

RESUMO

Sorghum (Sorghum bicolor) is a model C4 crop made experimentally tractable by extensive genomic and genetic resources. Biomass sorghum is studied as a feedstock for biofuel and forage. Mechanistic modeling suggests that reducing stomatal conductance (gs) could improve sorghum intrinsic water use efficiency (iWUE) and biomass production. Phenotyping to discover genotype-to-phenotype associations remains a bottleneck in understanding the mechanistic basis for natural variation in gs and iWUE. This study addressed multiple methodological limitations. Optical tomography and a machine learning tool were combined to measure stomatal density (SD). This was combined with rapid measurements of leaf photosynthetic gas exchange and specific leaf area (SLA). These traits were the subject of genome-wide association study and transcriptome-wide association study across 869 field-grown biomass sorghum accessions. The ratio of intracellular to ambient CO2 was genetically correlated with SD, SLA, gs, and biomass production. Plasticity in SD and SLA was interrelated with each other and with productivity across wet and dry growing seasons. Moderate-to-high heritability of traits studied across the large mapping population validated associations between DNA sequence variation or RNA transcript abundance and trait variation. A total of 394 unique genes underpinning variation in WUE-related traits are described with higher confidence because they were identified in multiple independent tests. This list was enriched in genes whose Arabidopsis (Arabidopsis thaliana) putative orthologs have functions related to stomatal or leaf development and leaf gas exchange, as well as genes with nonsynonymous/missense variants. These advances in methodology and knowledge will facilitate improving C4 crop WUE.


Assuntos
Perfilação da Expressão Gênica , Técnicas Genéticas/instrumentação , Estudo de Associação Genômica Ampla , Aprendizado de Máquina , Sorghum/genética , Água/metabolismo , Características de História de Vida , Fenótipo , Sorghum/metabolismo
2.
Viruses ; 16(5)2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38793601

RESUMO

West Nile virus (WNV) is an arbovirus spread primarily by Culex mosquitoes, with humans being a dead-end host. WNV was introduced to Florida in 2001, with 467 confirmed cases since. It is estimated that 80 percent of cases are asymptomatic, with mild cases presenting as a non-specific flu-like illness. Currently, detection of WNV in humans occurs primarily in healthcare settings via RT-PCR or CSF IgM when patients present with severe manifestations of disease including fever, meningitis, encephalitis, or acute flaccid paralysis. Given the short window of detectable viremia and requirement for CSF sampling, most WNV infections never receive an official diagnosis. This study utilized enzyme-linked immunosorbent assay (ELISA) to detect WNV IgG antibodies in 250 patient serum and plasma samples collected at Tampa General Hospital during 2020 and 2021. Plaque reduction neutralization tests were used to confirm ELISA results. Out of the 250 patients included in this study, 18.8% of them were IgG positive, consistent with previous WNV exposure. There was no relationship between WNV exposure and age or sex.


Assuntos
Anticorpos Antivirais , Imunoglobulina G , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Humanos , Vírus do Nilo Ocidental/imunologia , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/virologia , Florida/epidemiologia , Masculino , Feminino , Anticorpos Antivirais/sangue , Anticorpos Antivirais/líquido cefalorraquidiano , Pessoa de Meia-Idade , Estudos Soroepidemiológicos , Imunoglobulina G/sangue , Imunoglobulina G/líquido cefalorraquidiano , Adulto , Idoso , Adulto Jovem , Adolescente , Idoso de 80 Anos ou mais , Ensaio de Imunoadsorção Enzimática , Hospitalização , Imunoglobulina M/sangue , Imunoglobulina M/líquido cefalorraquidiano
3.
JCI Insight ; 5(12)2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32554925

RESUMO

BACKGROUNDPrediction of adverse outcomes in cerebral malaria (CM) is difficult. We hypothesized that cell-free DNA (cfDNA) levels would facilitate identification of severe and potentially fatal CM cases.METHODSIn this retrospective study, plasma from Malawian children with CM (n = 134), uncomplicated malaria (UM, n = 77), and healthy controls (HC, n = 60) was assayed for cfDNA using a fluorescence assay. Host and parasite cfDNA was measured by quantitative PCR. Immune markers were determined by ELISA, Luminex, or cytometric bead array.RESULTSTotal cfDNA increased with malaria severity (HC versus UM, P < 0.001; HC versus CM, P < 0.0001; UM versus CM, P < 0.0001), was elevated in retinopathy-positive (Ret+) CM relative to Ret- CM (7.66 versus 5.47 ng/µL, P = 0.027), and differentiated Ret+ fatal cases from survivors (AUC 0.779; P < 0.001). cfDNA levels in patients with non-malarial febrile illness (NMF, P = 0.25) and non-malarial coma (NMC, P = 0.99) were comparable with UM. Host DNA, rather than parasite DNA, was the major cfDNA contributor (UM, 268 versus 67 pg/µL; CM, 2824 versus 463 pg/µL). Host and parasite cfDNA distinguished CM by retinopathy (host, AUC 0.715, P = 0.0001; parasite, AUC 0.745, P = 0.0001), but only host cfDNA distinguished fatal cases (AUC 0.715, P = 0.0001). Total cfDNA correlated with neutrophil markers IL-8 (rs = 0.433, P < 0.0001) and myeloperoxidase (rs = 0.683, P < 0.0001).CONCLUSIONQuantifying plasma cfDNA is a simple assay useful in identifying children at risk for fatal outcome and has promise as a point-of-care assay. Elevated cfDNA suggests a link with host inflammatory pathways in fatal CM.FUNDINGNIH NCATS (AK), Burroughs-Wellcome (AK), and National Health and Medical Research Council of Australia (SJR).


Assuntos
Biomarcadores/sangue , Ácidos Nucleicos Livres/sangue , Malária Cerebral/diagnóstico , Malária Falciparum/sangue , Plasma/metabolismo , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Malária Cerebral/sangue , Malária Cerebral/parasitologia , Malária Falciparum/diagnóstico , Masculino , Neutrófilos/metabolismo
4.
PLoS One ; 14(7): e0219707, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31318925

RESUMO

MicroRNAs (miRNAs) are small non-protein coding RNAs and post-transcriptionally regulate cellular gene expression. In animal development, miRNAs play essential roles such as stem cell maintenance, organogenesis, and apoptosis. Using gain-of-function (GOF) screening with 160 miRNA lines in Drosophila melanogaster, we identified a set of miRNAs which regulates body fat contents and named them microCATs (microRNAs Controlling Adipose Tissue). Further examination of egg-to-adult developmental kinetics of selected miRNA lines showed a negative correlation between fat content and developmental time. Comparison of microCATs with loss-of-function miRNA screening data uncovered miR-969 as an essential regulator of adiposity. Subsequently, we demonstrated adipose tissue-specific knock-down of gustatory receptor 47b (Gr47b), a miR-969 target, greatly reduced the amount of body fat, recapitulating the miR-969 GOF phenotype.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Testes Genéticos , MicroRNAs/genética , Receptores de Superfície Celular/genética , Tecido Adiposo/metabolismo , Adiposidade/genética , Animais , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica , Heterozigoto , Especificidade de Órgãos , Receptores de Superfície Celular/metabolismo
5.
J Mol Signal ; 13: 1, 2018 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30210580

RESUMO

Cellular signaling pathways are often interconnected. They accurately and efficiently regulate essential cell functions such as protein synthesis, cell growth, and survival. The target of rapamycin (TOR) signaling pathway and the endoplasmic reticulum (ER) stress response pathway regulate similar cellular processes. However, the crosstalk between them has not been appreciated until recently and the detailed mechanisms remain unclear. Here, we show that ER stress-inducing drugs activate the TOR signaling pathway in S2R+ Drosophila cells. Activating transcription factor 6 (Atf6), a major stress-responsive ER transmembrane protein, is responsible for ER stress-induced TOR activation. Supporting the finding, we further show that knocking down of both site-1/2 proteases (S1P/S2P), Atf6 processing enzymes, are necessary to connect the two pathways.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA