RESUMO
PURPOSE: DISP1 encodes a transmembrane protein that regulates the secretion of the morphogen, Sonic hedgehog, a deficiency of which is a major cause of holoprosencephaly (HPE). This disorder covers a spectrum of brain and midline craniofacial malformations. The objective of the present study was to better delineate the clinical phenotypes associated with division transporter dispatched-1 (DISP1) variants. METHODS: This study was based on the identification of at least 1 pathogenic variant of the DISP1 gene in individuals for whom detailed clinical data were available. RESULTS: A total of 23 DISP1 variants were identified in heterozygous, compound heterozygous or homozygous states in 25 individuals with midline craniofacial defects. Most cases were minor forms of HPE, with craniofacial features such as orofacial cleft, solitary median maxillary central incisor, and congenital nasal pyriform aperture stenosis. These individuals had either monoallelic loss-of-function variants or biallelic missense variants in DISP1. In individuals with severe HPE, the DISP1 variants were commonly found associated with a variant in another HPE-linked gene (ie, oligogenic inheritance). CONCLUSION: The genetic findings we have acquired demonstrate a significant involvement of DISP1 variants in the phenotypic spectrum of midline defects. This underlines its importance as a crucial element in the efficient secretion of Sonic hedgehog. We also demonstrated that the very rare solitary median maxillary central incisor and congenital nasal pyriform aperture stenosis combination is part of the DISP1-related phenotype. The present study highlights the clinical risks to be flagged up during genetic counseling after the discovery of a pathogenic DISP1 variant.
Assuntos
Alelos , Holoprosencefalia , Fenótipo , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Anodontia , Fenda Labial/genética , Fenda Labial/patologia , Fissura Palatina/genética , Fissura Palatina/patologia , Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/patologia , Heterozigoto , Holoprosencefalia/genética , Holoprosencefalia/patologia , Homozigoto , Incisivo/anormalidades , Proteínas de Membrana/genética , Mutação de Sentido Incorreto/genéticaRESUMO
We describe the clinical presentation and evaluation of a 10-year-old boy who presented to our medical center with years of progressive proximal muscle weakness, muscle atrophy, and weight loss. In addition to a myopathic phenotype, he was found to have tachycardia, tremor, and learning difficulties. Electromyography revealed chronic myopathic changes and laboratory screening was notable for undetectable thyroid stimulating hormone. Follow-up testing revealed elevated thyroid peroxidase antibodies and thyroid stimulating immunoglobulins. Ultrasound examination revealed an enlarged heterogeneous thyroid gland. Four weeks after treatment with atenolol and methimazole, his strength and cognition began to improve. This case highlights the importance of evaluating for potentially reversible toxic-metabolic etiologies in children presenting with any progressive neurologic symptoms.
Assuntos
Debilidade Muscular , Humanos , Masculino , Criança , Debilidade Muscular/etiologia , Metimazol/uso terapêutico , Progressão da Doença , Atenolol/uso terapêutico , Atrofia Muscular/etiologia , Antitireóideos/uso terapêuticoRESUMO
OBJECTIVE: The objectives of this study were to define the clinical and biochemical spectrum of spinal muscular atrophy with progressive myoclonic epilepsy (SMA-PME) and to determine if aberrant cellular ceramide accumulation could be normalized by enzyme replacement. METHODS: Clinical features of 6 patients with SMA-PME were assessed by retrospective chart review, and a literature review of 24 previously published cases was performed. Leukocyte enzyme activity of acid ceramidase was assessed with a fluorescence-based assay. Skin fibroblast ceramide content and was assessed by high performance liquid chromatography, electrospray ionization tandem mass spectroscopy. Enzyme replacement was assessed using recombinant human acid ceramidase (rhAC) in vitro. RESULTS: The six new patients showed the hallmark features of SMA-PME, with variable initial symptom and age of onset. Five of six patients carried at least one of the recurrent SMA-PME variants observed in two specific codons of ASAH1. A review of 30 total cases revealed that patients who were homozygous for the most common c.125C > T variant presented in the first decade of life with limb-girdle weakness as the initial symptom. Sensorineural hearing loss was associated with the c.456A > C variant. Leukocyte acid ceramidase activity varied from 4.1%-13.1% of controls. Ceramide species in fibroblasts were detected and total cellular ceramide content was elevated by 2 to 9-fold compared to controls. Treatment with rhAC normalized ceramide profiles in cultured fibroblasts to control levels within 48 h. INTERPRETATION: This study details the genotype-phenotype correlations observed in SMA-PME and shows the impact of rhAC to correct the abnormal cellular ceramide profile in cells.
Assuntos
Ceramidase Ácida , Epilepsias Mioclônicas Progressivas , Humanos , Ceramidase Ácida/genética , Ceramidas , Estudos Retrospectivos , Epilepsias Mioclônicas Progressivas/genéticaRESUMO
Caspase-3 is a cysteine protease that is most commonly associated with cell death. Recent studies have shown additional roles in mediating cell differentiation, cell proliferation and development of cell morphology. We investigated the role of caspase-3 in the development of chick auditory brainstem nuclei during embryogenesis. Immunofluorescence from embryonic days E6-13 revealed that the temporal expression of cleaved caspase-3 follows the ascending anatomical pathway. The expression is first seen in the auditory portion of VIIIth nerve including central axonal regions projecting to nucleus magnocellularis (NM), then later in NM axons projecting to nucleus laminaris (NL), and subsequently in NL dendrites. To examine the function of cleaved caspase-3 in chick auditory brainstem development, we blocked caspase-3 cleavage in developing chick embryos with the caspase-3 inhibitor Z-DEVD-FMK from E6 to E9, then examined NM and NL morphology and NM axonal targeting on E10. NL lamination in treated embryos was disorganized and the neuropil around NL contained a significant number of glial cells normally excluded from this region. Additionally, NM axons projected into inappropriate portions of NL in Z-DEVD-FMK treated embyros. We found that the presence of misrouted axons was associated with more severe NL disorganization. The effects of axonal caspase-3 inhibition on both NL morphogenesis and NM axon targeting suggest that these developmental processes are coordinated, likely through communication between axons and their targets.
Assuntos
Astrócitos/fisiologia , Vias Auditivas/crescimento & desenvolvimento , Axônios/fisiologia , Tronco Encefálico/crescimento & desenvolvimento , Caspase 3/fisiologia , Morfogênese/fisiologia , Animais , Astrócitos/metabolismo , Vias Auditivas/embriologia , Vias Auditivas/metabolismo , Axônios/metabolismo , Tronco Encefálico/embriologia , Tronco Encefálico/metabolismo , Caspase 3/metabolismo , Embrião de GalinhaRESUMO
Auditory and vestibular afferents enter the brainstem through the VIIIth cranial nerve and find targets in distinct brain regions. We previously reported that the axon guidance molecules EphA4 and EphB2 have largely complementary expression patterns in the developing avian VIIIth nerve. Here, we tested whether inhibition of Eph signaling alters central targeting of VIIIth nerve axons. We first identified the central compartments through which auditory and vestibular axons travel. We then manipulated Eph-ephrin signaling using pharmacological inhibition of Eph receptors and in ovo electroporation to misexpress EphA4 and EphB2. Anterograde labeling of auditory afferents showed that inhibition of Eph signaling did not misroute axons to non-auditory target regions. Similarly, we did not find vestibular axons within auditory projection regions. However, we found that pharmacologic inhibition of Eph receptors reduced the volume of the vestibular projection compartment. Inhibition of EphB signaling alone did not affect auditory or vestibular central projection volumes, but it significantly increased the area of the auditory sensory epithelium. Misexpression of EphA4 and EphB2 in VIIIth nerve axons resulted in a significant shift of dorsoventral spacing between the axon tracts, suggesting a cell-autonomous role for the partitioning of projection areas along this axis. Cochlear ganglion volumes did not differ among treatment groups, indicating the changes seen were not due to a gain or loss of cochlear ganglion cells. These results suggest that Eph-ephrin signaling does not specify auditory versus vestibular targets but rather contributes to formation of boundaries for patterning of inner ear projections in the hindbrain.
Assuntos
Receptor EphA4/metabolismo , Receptor EphB2/metabolismo , Transdução de Sinais , Nervo Vestibulococlear/embriologia , Nervo Vestibulococlear/metabolismo , Animais , Vias Auditivas/embriologia , Axônios/metabolismo , Axônios/ultraestrutura , Padronização Corporal , Embrião de Galinha , Galinhas , Regulação da Expressão Gênica no Desenvolvimento , Receptor EphA4/genética , Receptor EphB2/genética , Rombencéfalo/embriologia , Rombencéfalo/metabolismo , Rombencéfalo/ultraestrutura , Nervo Vestibulococlear/citologiaRESUMO
The embryonic chick is a widely used model for the study of peripheral and central ganglion cell projections. In the auditory system, selective labeling of auditory axons within the VIIIth cranial nerve would enhance the study of central auditory circuit development. This approach is challenging because multiple sensory organs of the inner ear contribute to the VIIIth nerve (1). Moreover, markers that reliably distinguish auditory versus vestibular groups of axons within the avian VIIIth nerve have yet to be identified. Auditory and vestibular pathways cannot be distinguished functionally in early embryos, as sensory-evoked responses are not present before the circuits are formed. Centrally projecting VIIIth nerve axons have been traced in some studies, but auditory axon labeling was accompanied by labeling from other VIIIth nerve components (2,3). Here, we describe a method for anterograde tracing from the acoustic ganglion to selectively label auditory axons within the developing VIIIth nerve. First, after partial dissection of the anterior cephalic region of an 8-day chick embryo immersed in oxygenated artificial cerebrospinal fluid, the cochlear duct is identified by anatomical landmarks. Next, a fine pulled glass micropipette is positioned to inject a small amount of rhodamine dextran amine into the duct and adjacent deep region where the acoustic ganglion cells are located. Within thirty minutes following the injection, auditory axons are traced centrally into the hindbrain and can later be visualized following histologic preparation. This method provides a useful tool for developmental studies of peripheral to central auditory circuit formation.
Assuntos
Embrião de Galinha/anatomia & histologia , Nervo Vestibulococlear/embriologia , Animais , Axônios/química , Ducto Coclear/embriologia , Ducto Coclear/imunologia , Ducto Coclear/cirurgia , Dextranos/química , Dissecação/métodos , Gânglios/citologia , Gânglios/embriologia , Rodaminas/química , Nervo Vestibulococlear/anatomia & histologiaRESUMO
BACKGROUND: In the avian sound localization circuit, nucleus magnocellularis (NM) projects bilaterally to nucleus laminaris (NL), with ipsilateral and contralateral NM axon branches directed to dorsal and ventral NL dendrites, respectively. We previously showed that the Eph receptor EphB2 is expressed in NL neuropil and NM axons during development. Here we tested whether EphB2 contributes to NM-NL circuit formation. RESULTS: We found that misexpression of EphB2 in embryonic NM precursors significantly increased the number of axon targeting errors from NM to contralateral NL in a cell-autonomous manner when forward signaling was impaired. We also tested the effects of inhibiting forward signaling of different Eph receptor subclasses by injecting soluble unclustered Fc-fusion proteins at stages when NM axons are approaching their NL target. Again we found an increase in axon targeting errors compared to controls when forward signaling was impaired, an effect that was significantly increased when both Eph receptor subclasses were inhibited together. In addition to axon targeting errors, we also observed morphological abnormalities of the auditory nuclei when EphB2 forward signaling was increased by E2 transfection, and when Eph-ephrin forward signaling was inhibited by E6-E8 injection of Eph receptor fusion proteins. CONCLUSIONS: These data suggest that EphB signaling has distinct functions in axon guidance and morphogenesis. The results provide evidence that multiple Eph receptors work synergistically in the formation of precise auditory circuitry.