Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Mater Chem B ; 11(29): 6881-6888, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37377112

RESUMO

Butyrylcholinesterase (BChE), one of the critical human cholinesterases, plays crucial roles in numerous physiological and pathological processes. Accordingly, it is a striking and at the same time challenging target for bioimaging studies. Herein, we developed the first ever example of a 1,2-dixoetane-based chemiluminescent probe (BCC) for monitoring BChE activity in native biological contexts such as living cells and animals. BCC was initially shown to exhibit a highly selective and sensitive turn-on response in its luminescence signal upon reacting with BChE in aqueous solutions. Later, BCC was utilized to image endogenous BChE activity in normal and cancer cell lines. It was also shown through inhibition experiments that BChE can detect fluctuations of BChE levels successfully. In vivo imaging ability of BCC was demonstrated in healthy and tumor-bearing mice models. BCC enabled us to visualize the BChE activity in different regions of the body. Furthermore, it was successfully employed to monitor tumors derived from neuroblastoma cells with a very high signal to noise ratio. Thus, BCC appears as a highly promising chemiluminescent probe, which can be used to further understand the contribution of BChE to regular cellular processes and the formation of diseased states.


Assuntos
Butirilcolinesterase , Corantes Fluorescentes , Camundongos , Humanos , Animais , Butirilcolinesterase/metabolismo , Linhagem Celular
2.
Chem Commun (Camb) ; 59(66): 9972-9975, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37503543

RESUMO

A resorufin-based dual-locked fluorescent probe (RHT) was introduced to image melanoma cells selectively. RHT was shown to function as an AND molecular logic gate as it emitted a signal only in the presence of both hydrogen sulfide (H2S) and tyrosinase (Tyr), which are known to be overexpressed in melanoma cells. In vitro cell culture studies revealed that RHT can be activated with endogenous H2S and Tyr and allows selective imaging of B16-F10 cancer cells under confocal microscopy. RHT marks the first ever example of a fluorescent probe that is sequentially activated by H2S and Tyr.


Assuntos
Sulfeto de Hidrogênio , Melanoma , Humanos , Monofenol Mono-Oxigenase , Corantes Fluorescentes/farmacologia , Microscopia Confocal , Melanoma/diagnóstico por imagem , Células HeLa , Imagem Óptica
3.
RSC Chem Biol ; 4(9): 675-684, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37654504

RESUMO

Hydrogen sulfide (H2S) as a critical messenger molecule plays vital roles in regular cell function. However, abnormal levels of H2S, especially mitochondrial H2S, are directly correlated with the formation of pathological states including neurodegenerative diseases, cardiovascular disorders, and cancer. Thus, monitoring fluxes of mitochondrial H2S concentrations both in vitro and in vivo with high selectivity and sensitivity is crucial. In this direction, herein we developed the first ever example of a mitochondria-targeted and H2S-responsive new generation 1,2-dioxetane-based chemiluminescent probe (MCH). Chemiluminescent probes offer unique advantages compared to conventional fluorophores as they do not require external light irradiation to emit light. MCH exhibited a dramatic turn-on response in its luminescence signal upon reacting with H2S with high selectivity. It was used to detect H2S activity in different biological systems ranging from cancerous cells to human serum and tumor-bearing mice. We anticipate that MCH will pave the way for development of new organelle-targeted chemiluminescence agents towards imaging of different analytes in various biological models.

4.
ACS Appl Bio Mater ; 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36043987

RESUMO

Selective detection and effective therapy of brain cancer, specifically, the very aggressive glioblastoma multiforme (GBM), remains one of the paramount challenges in clinical settings. While radiotherapy combined surgery is proposed as the main treatment course, it has several drawbacks such as complexity of the operation and common development of recurrent tumors in this course of patient care. Unique opportunities presented by photodynamic therapy (PDT) offer promising, effective, and precise therapy against GBM cells along with simultaneous imaging opportunities. However, activatable, theranostic molecular systems in PDT modality for GBM remained scarce. Specifically, even though elevated ß-galactosidase (ß-gal) activity in glioblastoma cells is well-documented, targeted, activatable therapeutic PDT agents have not been realized. Herein, we report a ß-galactosidase (ß-gal) activatable phototheranostic agent based on an iodinated resorufin core (RB-1) which was realized in only three steps with commercial reagents in 29% overall yield. RB-1 showed very high singlet oxygen (1O2) quantum yield (54%) accompanied by a remarkable turn-on response in fluorescence upon enzymatic activation. RB-1 was tested in different cell lines and revealed selective photocytotoxicity in U-87MG glioblastoma cells. Additionally, thanks to almost 7% fluorescence quantum yield (ΦF) despite extremely high 1O2 generation yield, RB-1 was also demonstrated as a successful agent for fluorescence imaging of U-87MG cells. Due to significantly lower (ß-gal) activity in healthy cells (NIH/3T3), RB-1 stayed in a passive state and showed minimal photo and dark toxicity. RB-1 marks the first example of a ß-gal activatable phototheranostic agent toward effective treatment of glioblastoma.

5.
Chem Commun (Camb) ; 58(78): 10929-10932, 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36065979

RESUMO

Carboxylesterase 2 (CES2) has crucial roles in both xenobiotic metabolism and formation of pathogenic states including cancer. Thus, it is highly critical to monitor intracellular CES2 activity in living cancer cells. Here, we report a CES2 activatable phenoxy 1,2-dioxetane based chemiluminescent agent (CL-CES2). The probe exhibited a selective turn-on response in the presence of CES2 enzyme and enabled detection of CES2 activity in three different cancer cells that possess varying enzyme concentrations with high signal to noise ratios. In contrast no signal was obtained with CES1, an isoform of CES2 enzyme. CL-CES2 marks the first ever example of a CES2-responsive chemiluminescent luminophore and holds a great potential in further understanding the roles of CES2 activity in tumorogenesis.


Assuntos
Hidrolases de Éster Carboxílico , Neoplasias , Carboxilesterase/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Isoformas de Proteínas , Xenobióticos
6.
ACS Appl Bio Mater ; 5(6): 2754-2767, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35537187

RESUMO

Activity-based theranostic photosensitizers are highly attractive in photodynamic therapy as they offer enhanced therapeutic outcome on cancer cells with an imaging opportunity at the same time. However, photosensitizers (PS) cores that can be easily converted to activity-based photosensitizers (aPSs) are still quite limited in the literature. In this study, we modified the dicyanomethylene-4H-chromene (DCM) core with a heavy iodine atom to get two different PSs (DCMO-I, I-DCMO-Cl) that can be further converted to aPS after simple modifications. The effect of iodine positioning on singlet oxygen generation capacity was also evaluated through computational studies. DCMO-I showed better performance in solution experiments and further proved to be a promising phototheranostic scaffold via cell culture studies. Later, a cysteine (Cys) activatable PS based on the DCMO-I core (DCMO-I-Cys) was developed, which induced selective photocytotoxicity along with a fluorescence turn-on response in Cys rich cancer cells.


Assuntos
Iodo , Neoplasias , Fotoquimioterapia , Fluorescência , Iodo/uso terapêutico , Neoplasias/tratamento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Oxigênio Singlete/uso terapêutico
7.
ACS Med Chem Lett ; 11(12): 2491-2496, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33335672

RESUMO

A red-absorbing, water-soluble, and iodinated resorufin derivative (R1) that can be selectively activated with a monoamine oxidase (MAO) enzyme was synthesized, and its potential as a photodynamic therapy (PDT) agent was evaluated. R1 showed high 1O2 generation yields in aqueous solutions upon addition of MAO isoforms, and it was further tested in cell culture studies. R1 induced photocytotoxicity after being triggered by endogenous MAO enzyme in cancer cells with a much higher efficiency in SH-SY5Y neuroblastoma cells with high MAO-A expression. Additionally, R1 displayed differential cytotoxicity between cancer and normal cells, without any considerable dark toxicity. To the best of our knowledge, R1 marks the first example of a resorufin-based photosensitizer (PS) as well as the first anticancer drug that is activated by a MAO enzyme. Remarkably, the target PDT agent was obtained only in three steps as a result of versatile resorufin chemistry.

8.
ChemMedChem ; 14(22): 1879-1886, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31663667

RESUMO

Two red-absorbing, water-soluble and mitochondria (MT)-targeting selenophene-substituted BODIPY-based photosensitizers (PSs) were realized (BOD-Se, BOD-Se-I), and their potential as photodynamic therapy (PDT) agents were evaluated. BOD-Se-I showed higher 1 O2 generation yield thanks to the enhanced heavy-atom effect, and this derivative was further tested in detail in cell culture studies under both normoxic and hypoxic conditions. BOD-Se-I not only effectively functioned under hypoxic conditions, but also showed highly selective photocytotoxicity towards cancer cells. The selectivity is believed to arise from differences in mitochondrial membrane potentials of healthy and cancerous cells. To the best of our knowledge, this marks the first example of a MT-targeted BODIPY PS that functions under hypoxic conditions. Remarkably, thanks to the design strategy, all these properties where realized by a compound that was synthesized in only five steps with 32 % overall yield. Hence, this material holds great promise for the realization of next-generation PDT drugs for the treatment of hypoxic solid tumors.


Assuntos
Antineoplásicos/farmacologia , Compostos de Boro/farmacologia , Hipóxia Celular/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Compostos Organosselênicos/farmacologia , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Compostos de Boro/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Camundongos , Estrutura Molecular , Células NIH 3T3 , Compostos Organosselênicos/química , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA