Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Crit Rev Food Sci Nutr ; : 1-22, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36269014

RESUMO

Hypertension is the leading risk factor for cardiovascular diseases and is associated with intestinal dysbiosis with a decrease in beneficial microbiota. Probiotics can positively modulate the impaired microbiota and impart benefits to the cardiovascular system. Among them, the emended Lactobacillus has stood out as a microorganism capable of reducing blood pressure, being the target of several studies focused on managing hypertension. This review aimed to present the potential of Lactobacillus as an antihypertensive non-pharmacological strategy. We will address preclinical and clinical studies that support this proposal and the mechanisms of action by which these microorganisms reduce blood pressure or prevent its elevation.

2.
Pharmacol Res ; 171: 105779, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34298111

RESUMO

Crohn's disease (CD) and ulcerative colitis (UC) are the two main forms of inflammatory bowel disease (IBD). Among the various immune cells involved in IBD, neutrophils are the first to infiltrate and appear to contribute to the impairment of the epithelial barrier, destruction of tissues by oxidative and proteolytic damage, as well as to the perpetuation of inflammation by the release of cytokines and chemokines associated with pro-inflammatory effects. In addition to basic effector mechanisms, such as phagocytosis and chemotaxis, neutrophils can also form extracellular traps (NETs), which is made up of a mesh-like structure - which contains its chromatin (DNA + histones) together with granules and enzymes, such as myeloperoxidase (MPO) and neutrophilic elastase (NE) - and that acts as a trap that can result in the death of extracellular pathogens and/or can promote tissue damage. Recent evidence indicates that NETs also play an important and significant role in the pathogenesis of IBD. Previous studies have reported increased levels of NETs in tissue and serum samples from patients with IBD, as well as in experimental colitis. In this review, we discuss current knowledge about the formation of NETs and their role in the pathophysiology of IBD, pointing out potential mechanisms by which NETs promote tissue damage, as well as their involvement in complications associated with IBD. In addition, we propose potential targets for therapy to regulate the production of NETs, making it possible to expand the current spectrum of therapies for IBD.


Assuntos
Armadilhas Extracelulares/imunologia , Doenças Inflamatórias Intestinais/imunologia , Animais , Transtornos da Coagulação Sanguínea/etiologia , Transtornos da Coagulação Sanguínea/imunologia , Microbioma Gastrointestinal , Humanos , Doenças Inflamatórias Intestinais/complicações , Doenças Inflamatórias Intestinais/microbiologia
3.
BMC Biotechnol ; 19(1): 38, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31238939

RESUMO

BACKGROUND: Anti-Tumor Necrosis Factor-alpha therapy has become clinically important for treating inflammatory bowel disease. However, the use of conventional immunotherapy requires a systemic exposure of patients and collateral side effects. Lactic acid bacteria have been shown to be effective as mucosal delivering system for cytokine and single domain antibodies, and it is amenable to clinical purposes. Therefore, lactic acid bacteria may function as vehicles for delivery of therapeutic antibodies molecules to the gastrointestinal tract restricting the pharmacological effect towards the gut. Here, we use the mucosal delivery of Lactococcus lactis carrying an anti-TNFα scFv expression plasmid on a DSS-induced colitis model in mice. RESULTS: Experimental colitis was induced with DSS administered in drinking water. L. lactis carrying the scFv expression vector was introduced by gavage. After four days of treatment, animals showed a significant improvement in histological score and disease activity index compared to those of untreated animals. Moreover, treated mice display IL-6, IL17A, IL1ß, IL10 and FOXP3 mRNA levels similar to health control mice. Therefore, morphological and molecular markers suggest amelioration of the experimentally induced colitis. CONCLUSION: These results provide evidence for the use of this alternative system for delivering therapeutic biopharmaceuticals in loco for treating inflammatory bowel disease, paving the way for a novel low-cost and site-specific biotechnological route for the treatment of inflammatory disorders.


Assuntos
Colite/terapia , Citocinas/metabolismo , Vetores Genéticos/administração & dosagem , Lactococcus lactis/imunologia , Administração Oral , Animais , Anticorpos/genética , Anticorpos/imunologia , Anticorpos/metabolismo , Colite/induzido quimicamente , Colite/imunologia , Citocinas/genética , Citocinas/imunologia , Sulfato de Dextrana , Modelos Animais de Doenças , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Células HEK293 , Humanos , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Camundongos Endogâmicos C57BL , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/metabolismo , Fator de Necrose Tumoral alfa/imunologia
4.
Microb Cell Fact ; 16(1): 76, 2017 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-28468662

RESUMO

BACKGROUND: Antimicrobial peptides (AMPs) are the first line of host immune defense against pathogens. Among AMPs from the honeybee Apis mellifera, abaecin is a major broad-spectrum antibacterial proline-enriched cationic peptide. RESULTS: For heterologous expression of abaecin in Pichia pastoris, we designed an ORF with HisTag, and the codon usage was optimized. The gene was chemically synthetized and cloned in the pUC57 vector. The new ORF was sub-cloned in the pPIC9 expression vector and transformed into P. pastoris. After selection of positive clones, the expression was induced by methanol. The supernatant was analyzed at different times to determine the optimal time for the recombinant peptide expression. As a proof-of-concept, Escherichia coli was co-incubated with the recombinant peptide to verify its antimicrobial potential. DISCUSSION: Briefly, the recombinant Abaecin (rAbaecin) has efficiently decreased E. coli growth (P < 0.05) through an in vitro assay, and may be considered as a novel therapeutic agent that may complement other conventional antibiotic therapies.


Assuntos
Peptídeos Catiônicos Antimicrobianos/biossíntese , Peptídeos Catiônicos Antimicrobianos/genética , Expressão Gênica , Proteínas de Insetos/biossíntese , Proteínas de Insetos/genética , Pichia/genética , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Abelhas , Clonagem Molecular , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Engenharia Genética/métodos , Proteínas de Insetos/metabolismo , Proteínas de Insetos/farmacologia , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/farmacologia
5.
PLoS One ; 7(9): e44892, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23028664

RESUMO

Lactococci are noninvasive lactic acid bacteria frequently used as protein delivery vectors and, more recently, as DNA delivery vehicles. We previously showed that Lactococcus lactis (LL) expressing the Fibronectin-Binding Protein A of Staphylococcus aureus (LL-FnBPA+) showed higher internalization rates in vitro in Caco-2 cells than the native (wt) lactococci and were able to deliver a eukaryotic Green Fluorescent Protein (GFP) expression plasmid in 1% of human Caco-2 cells. Here, using the bovine beta-lactoglobulin (BLG), one of the major cow's milk allergen, and GFP we characterized the potential of LL-FnBPA+ as an in vivo DNA vaccine delivery vehicle. We first showed that the invasive strain LL-FnBPA+ carrying the plasmid pValac:BLG (LL-FnBPA+ BLG) was more invasive than LL-BLG and showed the same invasivity as LL-FnBPA+. Then we demonstrated that the Caco-2 cells, co-incubated with LL-FnBPA+ BLG produced up to 30 times more BLG than the Caco-2 cells co-incubated with the non invasive LL-BLG. Using two different gene reporters, BLG and GFP, and two different methods of detection, EIA and fluorescence microscopy, we showed in vivo that: i) in order to be effective, LL-FnBPA+ required a pre-coating with Fetal Calf Serum before oral administration; ii) plasmid transfer occurred in enterocytes without regard to the strains used (invasive or not); iii) the use of LL-FnBPA+ increased the number of mice producing BLG, but not the level of BLG produced. We thus confirmed the good potential of invasive recombinant lactic acid bacteria as DNA delivery vector in vivo.


Assuntos
Adesinas Bacterianas/biossíntese , Vetores Genéticos/metabolismo , Lactococcus lactis/metabolismo , Plasmídeos/metabolismo , Adesinas Bacterianas/genética , Animais , Transporte Biológico , Células CACO-2 , Bovinos , DNA Complementar/genética , Enterócitos/metabolismo , Enterócitos/microbiologia , Feminino , Vetores Genéticos/genética , Proteínas de Fluorescência Verde/genética , Humanos , Lactococcus lactis/genética , Lactoglobulinas/genética , Camundongos , Regiões Promotoras Genéticas/genética , Especificidade da Espécie , Staphylococcus aureus/genética , Vacinas de DNA/metabolismo
6.
PLoS One ; 6(4): e18551, 2011 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-21533164

RESUMO

BACKGROUND: Corynebacterium pseudotuberculosis, a gram-positive, facultative intracellular pathogen, is the etiologic agent of the disease known as caseous lymphadenitis (CL). CL mainly affects small ruminants, such as goats and sheep; it also causes infections in humans, though rarely. This species is distributed worldwide, but it has the most serious economic impact in Oceania, Africa and South America. Although C. pseudotuberculosis causes major health and productivity problems for livestock, little is known about the molecular basis of its pathogenicity. METHODOLOGY AND FINDINGS: We characterized two C. pseudotuberculosis genomes (Cp1002, isolated from goats; and CpC231, isolated from sheep). Analysis of the predicted genomes showed high similarity in genomic architecture, gene content and genetic order. When C. pseudotuberculosis was compared with other Corynebacterium species, it became evident that this pathogenic species has lost numerous genes, resulting in one of the smallest genomes in the genus. Other differences that could be part of the adaptation to pathogenicity include a lower GC content, of about 52%, and a reduced gene repertoire. The C. pseudotuberculosis genome also includes seven putative pathogenicity islands, which contain several classical virulence factors, including genes for fimbrial subunits, adhesion factors, iron uptake and secreted toxins. Additionally, all of the virulence factors in the islands have characteristics that indicate horizontal transfer. CONCLUSIONS: These particular genome characteristics of C. pseudotuberculosis, as well as its acquired virulence factors in pathogenicity islands, provide evidence of its lifestyle and of the pathogenicity pathways used by this pathogen in the infection process. All genomes cited in this study are available in the NCBI Genbank database (http://www.ncbi.nlm.nih.gov/genbank/) under accession numbers CP001809 and CP001829.


Assuntos
Corynebacterium pseudotuberculosis/patogenicidade , Evolução Molecular , Genoma Bacteriano , Virulência/genética , Corynebacterium pseudotuberculosis/genética
7.
Rev Bras Parasitol Vet ; 18(1): 39-41, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19500459

RESUMO

Phage display techniques have been widely employed to map epitope structures which have served as the basis for developing molecular vaccines. We have applied this technique to map specific epitopes of Rhipicephalus (Boophilus) microplus. In the present study, we have identified the potential immunogens using a process in which the selected phage clones were analyzed through bioinformatics, prior to final field tests. The present study demonstrates the feasibility of identifying important R. (B.) microplus phagotopes for vaccine development through screening of phage-displayed random peptide libraries and bioinformatics tools.


Assuntos
Biblioteca de Peptídeos , Carrapatos/classificação , Animais
8.
Rev. bras. parasitol. vet ; 18(1): 39-41, Mar. 2009. tab
Artigo em Inglês | LILACS | ID: lil-606763

RESUMO

Phage display techniques have been widely employed to map epitope structures which have served as the basis for developing molecular vaccines. We have applied this technique to map specific epitopes of Rhipicephalus (Boophilus) microplus. In the present study, we have identified the potential immunogens using a process in which the selected phage clones were analyzed through bioinformatics, prior to final field tests. The present study demonstrates the feasibility of identifying important R. (B.) microplus phagotopes for vaccine development through screening of phage-displayed random peptide libraries and bioinformatics tools.


Técnicas de phage display têm sido amplamente empregadas para o mapeamento de epítopos os quais tem servido como base para o desenvolvimento de vacinas moleculares. Esta técnica foi aplicada no mapeamento de epítopos do Rhipicephalus (Boophilus) microplus. Neste estudo, potenciais imunógenos foram identificados pela adoção de um processo em que os clones de fagos foram analisados por bioinformática, previamente à realização dos testes. Os resultados demonstraram a possibilidade da identificação de importantes mimetopos do R. (B.) microplus para o desenvolvimento de vacinas através da seleção de bibliotecas de phage display associada à análise de bioinformática.


Assuntos
Animais , Biblioteca de Peptídeos , Carrapatos/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA