RESUMO
BACKGROUND: Telomerase, a reverse transcriptase, maintains telomere and chromosomes integrity of dividing cells, while it is inactivated in most somatic cells. In tumor cells, telomerase is highly activated, and works in order to maintain the length of telomeres causing immortality, hence it could be considered as a potential marker to tumorigenesis.A series of 1,3,4-oxadiazole derivatives showed significant broad-spectrum anticancer activity against different cell lines, and demonstrated telomerase inhibition. METHODS: This series of 24 N-benzylidene-2-((5-(pyridine-4-yl)-1,3,4-oxadiazol-2yl)thio)acetohydrazide derivatives as telomerase inhibitors has been considered to carry out QSAR studies. The endpoint to build QSAR models is determined by the IC50 values for telomerase inhibition, i.e., the concentration (µM) of inhibitor that produces 50% inhibition. These values were converted to pIC50 (- log IC50) values. We used the most common and transparent method, where models are described by clearly expressed mathematical equations: Multiple Linear Regression (MLR) by Ordinary Least Squares (OLS). RESULTS: Validated models with high correlation coefficients were developed. The Multiple Linear Regression (MLR) models, by Ordinary Least Squares (OLS), showed good robustness and predictive capability, according to the Multi-Criteria Decision Making (MCDM = 0.8352), a technique that simultaneously enhances the performances of a certain number of criteria. The descriptors selected for the models, such as electrotopological state (E-state) descriptors, and extended topochemical atom (ETA) descriptors, showed the relevant chemical information contributing to the activity of these compounds. CONCLUSION: The results obtained in this study make sure about the identification of potential hits as prospective telomerase inhibitors.
Assuntos
Antineoplásicos/farmacologia , Modelos Moleculares , Oxidiazóis/farmacologia , Telomerase/antagonistas & inibidores , Antineoplásicos/química , Conjuntos de Dados como Assunto , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Concentração Inibidora 50 , Análise dos Mínimos Quadrados , Modelos Biológicos , Estrutura Molecular , Oxidiazóis/química , Relação Quantitativa Estrutura-AtividadeRESUMO
Cyclin Dependent Kinases-2 (CDK2) are members of serine/threonine protein kinases family. They play an important role in the regulation events of the eukaryotic cell division cycle, especially during the G1 to S phase transition. Experimental evidence indicate that excessive expression of CDK2s should cause abnormal cell cycle regulation. Therefore, since a long time, CDK2s have been considered potential therapeutic targets for cancer therapy. In this work, onehundred and forty-nine complexes of inhibitors bound in the CDK2-ATP pocket were submitted to short MD simulations (10ns) and free energy calculation. Comparison with experimental data (Ki, Kd and pIC50) revealed that short simulations are exhaustive to examine the crucial ligand-protein interactions within the complexes. Information collected on MD simulations of protein-ligand complexes has been used to perform a molecular modelling approach that incorporates flexibility into structure-based pharmacophore modelling (Common Hits Approach, CHA). The high number of pharmacophore models resulting from the MD simulation was thus reduced to a few representative groups of pharmacophore models. The performance of the models has been assessed by using the ROC curves analysis. This definitive set of validated pharmacophore models could be used to screen in-house and/or commercial datasets for detection of new CDK-2 inhibitors. We provide the models to all the researchers involved in this field.