Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nature ; 629(8010): 127-135, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38658750

RESUMO

Phenotypic variation among species is a product of evolutionary changes to developmental programs1,2. However, how these changes generate novel morphological traits remains largely unclear. Here we studied the genomic and developmental basis of the mammalian gliding membrane, or patagium-an adaptative trait that has repeatedly evolved in different lineages, including in closely related marsupial species. Through comparative genomic analysis of 15 marsupial genomes, both from gliding and non-gliding species, we find that the Emx2 locus experienced lineage-specific patterns of accelerated cis-regulatory evolution in gliding species. By combining epigenomics, transcriptomics and in-pouch marsupial transgenics, we show that Emx2 is a critical upstream regulator of patagium development. Moreover, we identify different cis-regulatory elements that may be responsible for driving increased Emx2 expression levels in gliding species. Lastly, using mouse functional experiments, we find evidence that Emx2 expression patterns in gliders may have been modified from a pre-existing program found in all mammals. Together, our results suggest that patagia repeatedly originated through a process of convergent genomic evolution, whereby regulation of Emx2 was altered by distinct cis-regulatory elements in independently evolved species. Thus, different regulatory elements targeting the same key developmental gene may constitute an effective strategy by which natural selection has harnessed regulatory evolution in marsupial genomes to generate phenotypic novelty.


Assuntos
Evolução Molecular , Proteínas de Homeodomínio , Locomoção , Marsupiais , Fatores de Transcrição , Animais , Feminino , Masculino , Camundongos , Epigenômica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genoma/genética , Genômica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Locomoção/genética , Marsupiais/anatomia & histologia , Marsupiais/classificação , Marsupiais/genética , Marsupiais/crescimento & desenvolvimento , Filogenia , Sequências Reguladoras de Ácido Nucleico/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fenótipo , Humanos
2.
Nat Methods ; 20(2): 218-228, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36690742

RESUMO

Spatial transcriptomic technologies and spatially annotated single-cell RNA sequencing datasets provide unprecedented opportunities to dissect cell-cell communication (CCC). However, incorporation of the spatial information and complex biochemical processes required in the reconstruction of CCC remains a major challenge. Here, we present COMMOT (COMMunication analysis by Optimal Transport) to infer CCC in spatial transcriptomics, which accounts for the competition between different ligand and receptor species as well as spatial distances between cells. A collective optimal transport method is developed to handle complex molecular interactions and spatial constraints. Furthermore, we introduce downstream analysis tools to infer spatial signaling directionality and genes regulated by signaling using machine learning models. We apply COMMOT to simulation data and eight spatial datasets acquired with five different technologies to show its effectiveness and robustness in identifying spatial CCC in data with varying spatial resolutions and gene coverages. Finally, COMMOT identifies new CCCs during skin morphogenesis in a case study of human epidermal development.


Assuntos
Comunicação Celular , Transcriptoma , Humanos , Comunicação Celular/genética , Perfilação da Expressão Gênica , Transdução de Sinais , Simulação por Computador , Análise de Célula Única
3.
PLoS Comput Biol ; 20(3): e1011835, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38427695

RESUMO

From mathematical models of growth to computer simulations of pigmentation, the study of shell formation has given rise to an abundant number of models, working at various scales. Yet, attempts to combine those models have remained sparse, due to the challenge of combining categorically different approaches. In this paper, we propose a framework to streamline the process of combining the molecular and tissue scales of shell formation. We choose these levels as a proxy to link the genotype level, which is better described by molecular models, and the phenotype level, which is better described by tissue-level mechanics. We also show how to connect observations on shell populations to the approach, resulting in collections of molecular parameters that may be associated with different populations of real shell specimens. The approach is as follows: we use a Quality-Diversity algorithm, a type of black-box optimization algorithm, to explore the range of concentration profiles emerging as solutions of a molecular model, and that define growth patterns for the mechanical model. At the same time, the mechanical model is simulated over a wide range of growth patterns, resulting in a variety of spine shapes. While time-consuming, these steps only need to be performed once and then function as look-up tables. Actual pictures of shell spines can then be matched against the list of existing spine shapes, yielding a potential growth pattern which, in turn, gives us matching molecular parameters. The framework is modular, such that models can be easily swapped without changing the overall working of the method. As a demonstration of the approach, we solve specific molecular and mechanical models, adapted from available theoretical studies on molluscan shells, and apply the multiscale framework to evaluate the characteristics of spines from three distinct populations of Turbo sazae.


Assuntos
Modelos Teóricos , Moluscos , Animais , Simulação por Computador , Algoritmos
4.
Semin Cancer Biol ; 95: 42-51, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37454878

RESUMO

Cell-cell interactions instruct cell fate and function. These interactions are hijacked to promote cancer development. Single-cell transcriptomics and spatial transcriptomics have become powerful new tools for researchers to profile the transcriptional landscape of cancer at unparalleled genetic depth. In this review, we discuss the rapidly growing array of computational tools to infer cell-cell interactions from non-spatial single-cell RNA-sequencing and the limited but growing number of methods for spatial transcriptomics data. Downstream analyses of these computational tools and applications to cancer studies are highlighted. We finish by suggesting several directions for further extensions that anticipate the increasing availability of multi-omics cancer data.


Assuntos
Neoplasias , Transcriptoma , Humanos , Perfilação da Expressão Gênica , Neoplasias/genética , Comunicação Celular/genética , Diferenciação Celular , Análise de Célula Única
5.
BMC Bioinformatics ; 21(1): 95, 2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32126976

RESUMO

BACKGROUND: Many cancers arise from mutations in cells within epithelial tissues. Mutations manifesting at the subcellular level influence the structure and function of the tissue resulting in cancer. Previous work has proposed how cell level properties can lead to mutant cell invasion, but has not incorporated detailed subcellular modelling RESULTS: We present a framework that allows the straightforward integration and simulation of SBML representations of subcellular dynamics within multiscale models of epithelial tissues. This allows us to investigate the effect of mutations in subcellular pathways on the migration of cells within the colorectal crypt. Using multiple models we find that mutations in APC, a key component in the Wnt signalling pathway, can bias neutral drift and can also cause downward invasion of mutant cells in the crypt. CONCLUSIONS: Our framework allows us to investigate how subcellular mutations, i.e. knockouts and knockdowns, affect cell-level properties and the resultant migration of cells within epithelial tissues. In the context of the colorectal crypt, we see that mutations in APC can lead directly to mutant cell invasion.


Assuntos
Neoplasias Colorretais/metabolismo , Modelos Biológicos , Adesão Celular , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/patologia , Bases de Dados Factuais , Humanos , Mutação , Via de Sinalização Wnt
6.
PLoS Biol ; 14(6): e1002491, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27348469

RESUMO

The crypts of the intestinal epithelium house the stem cells that ensure the continual renewal of the epithelial cells that line the intestinal tract. Crypt number increases by a process called crypt fission, the division of a single crypt into two daughter crypts. Fission drives normal tissue growth and maintenance. Correspondingly, it becomes less frequent in adulthood. Importantly, fission is reactivated to drive adenoma growth. The mechanisms governing fission are poorly understood. However, only by knowing how normal fission operates can cancer-associated changes be elucidated. We studied normal fission in tissue in three dimensions using high-resolution imaging and used intestinal organoids to identify underlying mechanisms. We discovered that both the number and relative position of Paneth cells and Lgr5+ cells are important for fission. Furthermore, the higher stiffness and increased adhesion of Paneth cells are involved in determining the site of fission. Formation of a cluster of Lgr5+ cells between at least two Paneth-cell-rich domains establishes the site for the upward invagination that initiates fission.


Assuntos
Mucosa Intestinal/citologia , Celulas de Paneth/citologia , Receptores Acoplados a Proteínas G/metabolismo , Nicho de Células-Tronco , Células-Tronco/citologia , Fatores Etários , Animais , Adesão Celular , Contagem de Células , Divisão Celular , Proliferação de Células , Integrina beta4/metabolismo , Mucosa Intestinal/metabolismo , Intestino Delgado/citologia , Intestino Delgado/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Modelos Biológicos , Organoides/citologia , Organoides/metabolismo , Celulas de Paneth/metabolismo , Receptores Acoplados a Proteínas G/genética , Células-Tronco/metabolismo
7.
J Math Biol ; 78(3): 777-814, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30206650

RESUMO

We consider mechanically-induced pattern formation within the framework of a growing, planar, elastic rod attached to an elastic foundation. Through a combination of weakly nonlinear analysis and numerical methods, we identify how the shape and type of buckling (super- or subcritical) depend on material parameters, and a complex phase-space of transition from super- to subcritical is uncovered. We then examine the effect of heterogeneity on buckling and post-buckling behaviour, in the context of a heterogeneous substrate adhesion, elastic stiffness, or growth. We show how the same functional form of heterogeneity in different properties is manifest in a vastly differing post-buckled shape. Finally, a fourth form of heterogeneity, an imperfect foundation, is incorporated and shown to have a more dramatic impact on the buckling instability, a difference that can be qualitatively understood via the weakly nonlinear analysis.


Assuntos
Padronização Corporal/fisiologia , Elasticidade/fisiologia , Modelos Biológicos , Animais , Fenômenos Biomecânicos , Simulação por Computador , Humanos , Conceitos Matemáticos , Morfogênese/fisiologia , Dinâmica não Linear
8.
Bull Math Biol ; 80(2): 335-359, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29234982

RESUMO

Crypt fission is an in vivo tissue deformation process that is involved in both intestinal homeostasis and colorectal tumourigenesis. Despite its importance, the mechanics underlying crypt fission are currently poorly understood. Recent experimental development of organoids, organ-like buds cultured from crypt stem cells in vitro, has shown promise in shedding light on crypt fission. Drawing inspiration from observations of organoid growth and fission in vivo, we develop a computational model of a deformable epithelial tissue layer. Results from in silico experiments show the stiffness of cells and the proportions of cell subpopulations affect the nature of deformation in the epithelial layer. In particular, we find that increasing the proportion of stiffer cells in the layer increases the likelihood of crypt fission occurring. This is in agreement with and helps explain recent experimental work.


Assuntos
Mucosa Intestinal/anatomia & histologia , Modelos Biológicos , Animais , Fenômenos Biomecânicos , Morte Celular , Proliferação de Células , Tamanho Celular , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/fisiopatologia , Simulação por Computador , Homeostase , Humanos , Mucosa Intestinal/patologia , Mucosa Intestinal/fisiopatologia , Conceitos Matemáticos , Modelos Anatômicos
9.
J Invest Dermatol ; 143(9): 1667-1677, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37612031

RESUMO

Single-cell technologies have become essential to driving discovery in both basic and translational investigative dermatology. Despite the multitude of available datasets, a central reference atlas of normal human skin, which can serve as a reference resource for skin cell types, cell states, and their molecular signatures, is still lacking. For any such atlas to receive broad acceptance, participation by many investigators during atlas construction is an essential prerequisite. As part of the Human Cell Atlas project, we have assembled a Skin Biological Network to build a consensus Human Skin Cell Atlas and outline a roadmap toward that goal. We define the drivers of skin diversity to be considered when selecting sequencing datasets for the atlas and list practical hurdles during skin sampling that can result in data gaps and impede comprehensive representation and technical considerations for tissue processing and computational analysis, the accounting for which should minimize biases in cell type enrichments and exclusions and decrease batch effects. By outlining our goals for Atlas 1.0, we discuss how it will uncover new aspects of skin biology.


Assuntos
Pesquisadores , Pele , Humanos , Consenso
10.
Front Genet ; 13: 948508, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105110

RESUMO

Cell-cell interactions (CCI) play significant roles in manipulating biological functions of cells. Analyzing the differences in CCI between healthy and diseased conditions of a biological system yields greater insight than analyzing either conditions alone. There has been a recent and rapid growth of methods to infer CCI from single-cell RNA-sequencing (scRNA-seq), revealing complex CCI networks at a previously inaccessible scale. However, the majority of current CCI analyses from scRNA-seq data focus on direct comparisons between individual CCI networks of individual samples from patients, rather than "group-level" comparisons between sample groups of patients comprising different conditions. To illustrate new biological features among different disease statuses, we investigated the diversity of key network features on groups of CCI networks, as defined by different disease statuses. We considered three levels of network features: node level, as defined by cell type; node-to-node level; and network level. By applying these analysis to a large-scale single-cell RNA-sequencing dataset of coronavirus disease 2019 (COVID-19), we observe biologically meaningful patterns aligned with the progression and subsequent convalescence of COVID-19.

11.
Curr Opin Syst Biol ; 26: 12-23, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33969247

RESUMO

Cell-cell communication is a fundamental process that shapes biological tissue. Historically, studies of cell-cell communication have been feasible for one or two cell types and a few genes. With the emergence of single-cell transcriptomics, we are now able to examine the genetic profiles of individual cells at unprecedented scale and depth. The availability of such data presents an exciting opportunity to construct a more comprehensive description of cell-cell communication. This review discusses the recent explosion of methods that have been developed to infer cell-cell communication from non-spatial and spatial single-cell transcriptomics, two promising technologies which have complementary strengths and limitations. We propose several avenues to propel this rapidly expanding field forward in meaningful ways.

12.
J R Soc Interface ; 15(145)2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30068555

RESUMO

The intestinal epithelium is a single layer of cells which provides the first line of defence of the intestinal mucosa to bacterial infection. Cohesion of this physical barrier is supported by renewal of epithelial stem cells, residing in invaginations called crypts, and by crypt cell migration onto protrusions called villi; dysregulation of such mechanisms may render the gut susceptible to chronic inflammation. The impact that excessive or misplaced epithelial cell death may have on villus cell migration is currently unknown. We integrated cell-tracking methods with computational models to determine how epithelial homeostasis is affected by acute and chronic TNFα-driven epithelial cell death. Parameter inference reveals that acute inflammatory cell death has a transient effect on epithelial cell dynamics, whereas cell death caused by chronic elevated TNFα causes a delay in the accumulation of labelled cells onto the villus compared to the control. Such a delay may be reproduced by using a cell-based model to simulate the dynamics of each cell in a crypt-villus geometry, showing that a prolonged increase in cell death slows the migration of cells from the crypt to the villus. This investigation highlights which injuries (acute or chronic) may be regenerated and which cause disruption of healthy epithelial homeostasis.


Assuntos
Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Duodeno/metabolismo , Íleo/metabolismo , Mucosa Intestinal/metabolismo , Fator de Necrose Tumoral alfa/toxicidade , Animais , Caspase 3/metabolismo , Duodeno/patologia , Íleo/patologia , Mucosa Intestinal/patologia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA