Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-32482672

RESUMO

Flaviviruses such as Zika virus (ZIKV), dengue virus (DENV), and West Nile virus (WNV) are major global pathogens for which safe and effective antiviral therapies are not currently available. To identify antiviral small molecules with well-characterized safety and bioavailability profiles, we screened a library of 2,907 approved drugs and pharmacologically active compounds for inhibitors of ZIKV infection using a high-throughput cell-based immunofluorescence assay. Interestingly, estrogen receptor modulators raloxifene hydrochloride and quinestrol were among 15 compounds that significantly inhibited ZIKV infection in repeat screens. Subsequent validation studies revealed that these drugs effectively inhibit ZIKV, DENV, and WNV (Kunjin strain) infection at low micromolar concentrations with minimal cytotoxicity in Huh-7.5 hepatoma cells and HTR-8 placental trophoblast cells. Since these cells lack detectable expression of estrogen receptors-α and -ß (ER-α and ER-ß) and similar antiviral effects were observed in the context of subgenomic DENV and ZIKV replicons, these compounds appear to inhibit viral RNA replication in a manner that is independent of their known effects on estrogen receptor signaling. Taken together, quinestrol, raloxifene hydrochloride, and structurally related analogues warrant further investigation as potential therapeutics for treatment of flavivirus infections.


Assuntos
Vírus da Dengue , Infecções por Flavivirus , Flavivirus , Infecção por Zika virus , Zika virus , Vírus da Dengue/genética , Moduladores de Receptor Estrogênico , Feminino , Humanos , Placenta , Gravidez
2.
J Gen Virol ; 100(4): 629-641, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30869582

RESUMO

There is growing evidence of the influence of sphingosine kinase (SK) enzymes on viral infection. Here, the role of sphingosine kinase 2 (SK2), an isoform of SK prominent in the brain, was defined during dengue virus (DENV) infection. Chemical inhibition of SK2 activity using two different SK2 inhibitors, ABC294640 and K145, had no effect on DENV infection in human cells in vitro. In contrast, DENV infection was restricted in SK2-/- immortalized mouse embryonic fibroblasts (iMEFs) with reduced induction of IFN-ß mRNA and protein, and mRNA for the IFN-stimulated genes (ISGs) viperin, IFIT1, IRF7 and CXCL10 in DENV-infected SK2-/- compared to WT iMEFs. Intracranial (ic) DENV injection in C57BL/6 SK2-/- mice induced body weight loss earlier than in WT mice but DENV RNA levels were comparable in the brain. Neither SK1 mRNA or sphingosine-1-phosphate (S1P) levels were altered following ic DENV infection in WT or SK2-/- mice but brain S1P levels were reduced in all SK2-/- mice, independent of DENV infection. CD8 mRNA was induced in the brains of both DENV-infected WT and SK2-/- mice, suggesting normal CD8+ T-cell infiltration into the DENV-infected brain independent of SK2 or S1P. Thus, although SK2 may be important for replication of some viruses SK2 activity does not affect DENV infection in vitro and SK2 or S1P levels do not influence DENV infection or T-cell infiltration in the context of infection in the brain.


Assuntos
Vírus da Dengue/patogenicidade , Dengue/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Adamantano/análogos & derivados , Adamantano/farmacologia , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/virologia , Linhagem Celular , Linhagem Celular Tumoral , Dengue/tratamento farmacológico , Vírus da Dengue/efeitos dos fármacos , Células HEK293 , Células Hep G2 , Humanos , Interferon beta/metabolismo , Lisofosfolipídeos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Piridinas/farmacologia , RNA Mensageiro/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Tiazolidinedionas/farmacologia
3.
J Virol ; 92(14)2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29743365

RESUMO

Severe dengue virus (DENV) infection is associated with overactivity of the complement alternative pathway (AP) in patient studies. Here, the molecular changes in components of the AP during DENV infection in vitro were investigated. mRNA for factor H (FH), a major negative regulator of the AP, was significantly increased in DENV-infected endothelial cells (EC) and macrophages, but, in contrast, production of extracellular FH protein was not. This discord was not seen for the AP activator factor B (FB), with DENV induction of both FB mRNA and protein, nor was it seen with Toll-like receptor 3 or 4 stimulation of EC and macrophages, which induces both FH and FB mRNA and protein. Surface-bound and intracellular FH protein was, however, induced by DENV, but only in DENV antigen-positive cells, while in two other DENV-susceptible immortalized cell lines (ARPE-19 and human retinal endothelial cells), FH protein was induced both intracellularly and extracellularly by DENV infection. Regardless of the cell type, there was an imbalance in AP components and an increase in markers of complement AP activity associated with DENV-infected cells, with lower FH relative to FB protein, an increased ability to promote AP-mediated lytic activity, and increased deposition of complement component C3b on the surface of DENV-infected cells. For EC in particular, these changes are predicted to result in higher complement activity in the local cellular microenvironment, with the potential to induce functional changes that may result in increased vascular permeability, a hallmark of dengue disease.IMPORTANCE Dengue virus (DENV) is a significant human viral pathogen with a global medical and economic impact. DENV may cause serious and life-threatening disease, with increased vascular permeability and plasma leakage. The pathogenic mechanisms underlying these features remain unclear; however, overactivity of the complement alternative pathway has been suggested to play a role. In this study, we investigate the molecular events that may be responsible for this observed alternative pathway overactivity and provide novel findings of changes in the complement system in response to DENV infection in primary cell types that are a major target for DENV infection (macrophages) and pathogenesis (endothelial cells) in vivo Our results suggest a new dimension of cellular events that may influence endothelial cell barrier function during DENV infection that could expand strategies for developing therapeutics to prevent or control DENV-mediated vascular disease.


Assuntos
Fator B do Complemento/imunologia , Fator H do Complemento/imunologia , Via Alternativa do Complemento , Proteínas do Sistema Complemento/imunologia , Vírus da Dengue/imunologia , Dengue/imunologia , Células Cultivadas , Fator B do Complemento/metabolismo , Fator H do Complemento/metabolismo , Proteínas do Sistema Complemento/metabolismo , Dengue/metabolismo , Dengue/virologia , Endotélio Vascular/imunologia , Endotélio Vascular/patologia , Endotélio Vascular/virologia , Humanos , Retina/imunologia , Retina/patologia , Retina/virologia
4.
J Virol ; 91(23)2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28956770

RESUMO

Dengue virus (DENV) is a major global pathogen that causes significant morbidity and mortality in tropical and subtropical areas worldwide. An improved understanding of the regions within the DENV genome and its encoded proteins that are required for the virus replication cycle will expedite the development of urgently required therapeutics and vaccines. We subjected an infectious DENV genome to unbiased insertional mutagenesis and used next-generation sequencing to identify sites that tolerate 15-nucleotide insertions during the virus replication cycle in hepatic cell culture. This revealed that the regions within capsid, NS1, and the 3' untranslated region were the most tolerant of insertions. In contrast, prM- and NS2A-encoding regions were largely intolerant of insertions. Notably, the multifunctional NS1 protein readily tolerated insertions in regions within the Wing, connector, and ß-ladder domains with minimal effects on viral RNA replication and infectious virus production. Using this information, we generated infectious reporter viruses, including a variant encoding the APEX2 electron microscopy tag in NS1 that uniquely enabled high-resolution imaging of its localization to the surface and interior of viral replication vesicles. In addition, we generated a tagged virus bearing an mScarlet fluorescent protein insertion in NS1 that, despite an impact on fitness, enabled live cell imaging of NS1 localization and traffic in infected cells. Overall, this genome-wide profile of DENV genome flexibility may be further dissected and exploited in reporter virus generation and antiviral strategies.IMPORTANCE Regions of genetic flexibility in viral genomes can be exploited in the generation of reporter virus tools and should arguably be avoided in antiviral drug and vaccine design. Here, we subjected the DENV genome to high-throughput insertional mutagenesis to identify regions of genetic flexibility and enable tagged reporter virus generation. In particular, the viral NS1 protein displayed remarkable tolerance of small insertions. This genetic flexibility enabled generation of several novel NS1-tagged reporter viruses, including an APEX2-tagged virus that we used in high-resolution imaging of NS1 localization in infected cells by electron microscopy. For the first time, this analysis revealed the localization of NS1 within viral replication factories known as "vesicle packets" (VPs), in addition to its acknowledged localization to the luminal surface of these VPs. Together, this genetic profile of DENV may be further refined and exploited in the identification of antiviral targets and the generation of reporter virus tools.


Assuntos
Vírus da Dengue/genética , Genoma Viral , Mutagênese Insercional , Proteínas não Estruturais Virais/genética , Replicação Viral/genética , Linhagem Celular , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Vírus da Dengue/fisiologia , Vírus da Dengue/ultraestrutura , Endonucleases , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Microscopia Eletrônica , Enzimas Multifuncionais , RNA Viral , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/ultraestrutura
5.
J Gen Virol ; 97(1): 95-109, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26541871

RESUMO

Sphingosine kinase (SK) 1 is a host kinase that enhances some viral infections. Here we investigated the ability of SK1 to modulate dengue virus (DENV) infection in vitro. Overexpression of SK1 did not alter DENV infection; however, targeting SK1 through chemical inhibition resulted in reduced DENV RNA and infectious virus release. DENV infection of SK1⁻/ ⁻ murine embryonic fibroblasts (MEFs) resulted in inhibition of infection in an immortalized line (iMEF) but enhanced infection in primary MEFs (1°MEFs). Global cellular gene expression profiles showed expected innate immune mRNA changes in DENV-infected WT but no induction of these responses in SK1⁻/⁻ iMEFs. Reverse transciption PCR demonstrated a low-level induction of IFN-ß and poor induction of mRNA for the interferon-stimulated genes (ISGs) viperin, IFIT1 and CXCL10 in DENV-infected SK1⁻/⁻ compared with WT iMEFs. Similarly, reduced induction of ISGs was observed in SK1⁻/⁻ 1°MEFs, even in the face of high-level DENV replication. In both iMEFs and 1°MEFs, DENV infection induced production of IFN-ß protein. Additionally, higher basal levels of antiviral factors (IRF7, CXCL10 and OAS1) were observed in uninfected SK1⁻/⁻ iMEFs but not 1°MEFs. This suggests that, in this single iMEF line, lack of SK1 upregulates the basal levels of factors that may protect cells against DENV infection. More importantly, regardless of the levels of DENV replication, all cells that lacked SK1 produced IFN-ß but were refractory to induction of ISGs such as viperin, IFIT1 and CXCL10. Based on these findings, we propose new roles for SK1 in affecting innate responses that regulate susceptibility to DENV infection.


Assuntos
Vírus da Dengue/imunologia , Vírus da Dengue/fisiologia , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno , Imunidade Inata , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Animais , Células Cultivadas , Fibroblastos/virologia , Perfilação da Expressão Gênica , Camundongos Endogâmicos C57BL , Camundongos Knockout
6.
J Virol ; 88(7): 3636-52, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24429364

RESUMO

UNLABELLED: Hepatitis C virus (HCV) NS5A is essential for viral genome replication within cytoplasmic replication complexes and virus assembly at the lipid droplet (LD) surface, although its definitive functions are poorly understood. We developed approaches to investigate NS5A dynamics during a productive infection. We report here that NS5A motility and efficient HCV RNA replication require the microtubule network and the cytoplasmic motor dynein and demonstrate that both motile and relatively static NS5A-positive foci are enriched with host factors VAP-A and Rab5A. Pulse-chase imaging revealed that newly synthesized NS5A foci are small and distinct from aged foci, while further studies using a unique dual fluorescently tagged infectious HCV chimera showed a relatively stable association of NS5A foci with core-capped LDs. These results reveal new details about the dynamics and maturation of NS5A and the nature of potential sites of convergence of HCV replication and assembly pathways. IMPORTANCE: Hepatitis C virus (HCV) is a major cause of serious liver disease worldwide. An improved understanding of the HCV replication cycle will enable development of novel and improved antiviral strategies. Here we have developed complementary fluorescent labeling and imaging approaches to investigate the localization, traffic and interactions of the HCV NS5A protein in living, virus-producing cells. These studies reveal new details as to the traffic, composition and biogenesis of NS5A foci and the nature of their association with putative sites of virus assembly.


Assuntos
Hepacivirus/imunologia , Proteínas não Estruturais Virais/análise , Montagem de Vírus , Replicação Viral , Linhagem Celular , Dineínas/metabolismo , Hepatócitos/química , Hepatócitos/virologia , Humanos , Microtúbulos/metabolismo , Proteínas de Transporte Vesicular/análise , Proteínas rab5 de Ligação ao GTP/análise
7.
Mediators Inflamm ; 2015: 509306, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26609198

RESUMO

One of the main pathogenic effects of severe dengue virus (DENV) infection is a vascular leak syndrome. There are no available antivirals or specific DENV treatments and without hospital support severe DENV infection can be life-threatening. The cause of the vascular leakage is permeability changes in the endothelial cells lining the vasculature that are brought about by elevated vasoactive cytokine and chemokines induced following DENV infection. The source of these altered cytokine and chemokines is traditionally believed to be from DENV-infected cells such as monocyte/macrophages and dendritic cells. Herein we discuss the evidence for the endothelium as an additional contributor to inflammatory and innate responses during DENV infection which may affect endothelial cell function, in particular the ability to maintain vascular integrity. Furthermore, we hypothesise roles for two factors, sphingosine kinase-1 and microRNAs (miRNAs), with a focus on several candidate miRNAs, which are known to control normal vascular function and inflammatory responses. Both of these factors may be potential therapeutic targets to regulate inflammation of the endothelium during DENV infection.


Assuntos
Dengue/fisiopatologia , Endotélio Vascular/patologia , Inflamação/etiologia , MicroRNAs/fisiologia , Fosfotransferases (Aceptor do Grupo Álcool)/fisiologia , Permeabilidade Capilar , Humanos
8.
Hepatology ; 58(5): 1558-68, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23703790

RESUMO

UNLABELLED: Host factors play an important role in all facets of the hepatitis C virus (HCV) life cycle and one such host factor is signal transducer and activator of transcription 3 (STAT3). The HCV core protein has been shown to directly interact with and activate STAT3, while oxidative stress generated during HCV replication in a replicon-based model also induced STAT3 activation. However, despite these findings the precise role of STAT3 in the HCV life cycle remains unknown. We have established that STAT3 is actively phosphorylated in the presence of replicating HCV. Furthermore, expression of a constitutively active form of STAT3 leads to marked increases in HCV replication, whereas, conversely, chemical inhibition and small interfering RNA (siRNA) knockdown of STAT3 leads to significant decreases in HCV RNA levels. This strongly implicates STAT3 as a proviral host factor. As STAT3 is a transcription factor, up-regulation of a distinct set of STAT3-dependent genes may create an environment that is favorable for HCV replication. However, STAT3 has recently been demonstrated to positively regulate microtubule (MT) dynamics, by way of a direct sequestration of the MT depolymerizing protein Stathmin 1 (STMN1), and we provide evidence that STAT3 may exert its effect on the HCV life cycle by way of positive regulation of MT dynamics. CONCLUSION: We have demonstrated that STAT3 plays a role in the life cycle of HCV and have clarified the role of STAT3 as a proviral host factor.


Assuntos
Hepacivirus/fisiologia , Fator de Transcrição STAT3/fisiologia , Carcinoma Hepatocelular/etiologia , Linhagem Celular Tumoral , Humanos , Neoplasias Hepáticas/etiologia , Microtúbulos/fisiologia , RNA Interferente Pequeno/genética , Fator de Transcrição STAT3/antagonistas & inibidores , Estatmina/fisiologia , Replicação Viral
9.
Sci Rep ; 12(1): 2889, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35190587

RESUMO

Metformin inhibits oxidative phosphorylation and can be used to dissect metabolic pathways in colorectal cancer (CRC) cells. CRC cell proliferation is inhibited by metformin in a dose dependent manner. MicroRNAs that regulate metabolism could be identified by their ability to alter the effect of metformin on CRC cell proliferation. An unbiased high throughput functional screen of a synthetic micoRNA (miRNA) library was used to identify miRNAs that impact the metformin response in CRC cells. Experimental validation of selected hits identified miRNAs that sensitize CRC cells to metformin through modulation of proliferation, apoptosis, cell-cycle and direct metabolic disruption. Among eight metformin sensitizing miRNAs identified by functional screening, miR-676-3p had both pro-apoptotic and cell cycle arrest activity in combination with metformin, whereas other miRNAs (miR-18b-5p, miR-145-3p miR-376b-5p, and miR-718) resulted primarily in cell cycle arrest when combined with metformin. Investigation of the combined effect of miRNAs and metformin on CRC cell metabolism showed that miR-18b-5p, miR-145-3p, miR-376b-5p, miR-676-3p and miR-718 affected glycolysis only, while miR-1181 only regulated CRC respiration. MicroRNAs can sensitize CRC cells to the anti-proliferative effects of metformin. Identifying relevant miRNA targets may enable the design of innovative therapeutic strategies.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Metformina/farmacologia , MicroRNAs/fisiologia , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Neoplasias Colorretais/patologia , Relação Dose-Resposta a Droga , Glicólise/efeitos dos fármacos , Glicólise/genética , Humanos
10.
Methods Mol Biol ; 552: 115-29, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19513645

RESUMO

Expression of proteins in insect cells using recombinant baculoviruses has gained wide use in the G protein-coupled receptor (GPCR) community. This expression system produces high yields of functional receptor, is able to perform post-translational modifications, and is readily adaptable to large-scale culture. Here, we describe the generic methods for expressing a GPCR using baculovirus-infected insect cells, including the maintenance of insect cell culture. Data are presented for polyhedrin promoter-driven expression of a C-terminal 6 x histidine-tagged mammalian M(2) muscarinic receptor in Sf9 cells. Results demonstrate that expressed receptor could be detected and quantified using radiolabeled ligand binding, that expression was maximal at approximately 72 h post-infection, and that expression levels could be altered by addition of various ligands to cultures of infected insect cells.


Assuntos
Baculoviridae/genética , Receptor Muscarínico M2/metabolismo , Proteínas Recombinantes/metabolismo , Spodoptera/metabolismo , Animais , Células Cultivadas , Receptor Muscarínico M2/genética , Receptor Muscarínico M2/isolamento & purificação , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
11.
Virology ; 507: 20-31, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28395182

RESUMO

The HCV NS5A protein is essential for viral RNA replication and virus particle assembly. To study the viral replication cycle and NS5A biology we generated an infectious HCV construct with a NanoLuciferase (NLuc) insertion within NS5A. Surprisingly, beyond its utility as a sensitive reporter of cytoplasmic viral RNA replication, we also observed strong luminescence in cell culture fluids. Further analysis using assembly-defective viruses and subgenomic replicons revealed that infectious virus production was not required for extracellular NS5A-NLuc activity but was associated with enrichment of extracellular NS5A-NLuc in intermediate-density fractions similar to those of exosomes and virus particles. Additionally, BRET analysis indicated that intracellular and extracellular forms of NS5A may adopt differing conformations. Importantly, infection studies using a human liver chimeric mouse model confirmed robust infection in vivo and ready detection of NLuc activity in serum. We hypothesise that the presence of NS5A in extracellular fluids contributes to HCV pathogenesis.


Assuntos
Líquido Extracelular/virologia , Hepacivirus/metabolismo , Hepatite C/virologia , Luciferases/metabolismo , Proteínas não Estruturais Virais/metabolismo , Animais , Genes Reporter , Hepacivirus/genética , Humanos , Luciferases/genética , Camundongos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas não Estruturais Virais/genética
12.
Clin Transl Immunology ; 6(7): e151, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28791126

RESUMO

Dengue virus (DENV) regulates sphingosine kinase (SK)-1 activity and chemical inhibition of SK1 reduces DENV infection. In primary murine embryonic fibroblasts (pMEFs) lacking SK1 however, DENV infection is enhanced and this is associated with induction of normal levels of interferon beta (IFN-ß) but reduced levels of IFN-stimulated genes (ISGs). We have further investigated this link between SK1 and type I IFN responses. DENV infection downregulates cell-surface IFN-alpha receptor (IFNAR)1 in both wild-type (WT) and SK1-/- pMEF, but, consistent with poor ISG responses, shows reduced induction of phosphorylated (p)-STAT1 and key IFN regulatory factors (IRF)1 and -7 in SK1-/- pMEF. Direct IFN stimulation induced ISGs (viperin, IFIT1), CXCL10, IRF1 and -7 and p-STAT1. Responses, however, were significantly reduced in SK1-/- pMEF, except for IFN-stimulated CXCL10 and IRF7. Poor IFN responses in SK1-/- pMEF were associated with a small reduction in basal cell-surface IFNAR1 and IRF1 mRNA in uninfected SK1-/- compared with WT pMEF. In contrast, treatment of cells with the SK1 inhibitor, SK1-I or expression of an inhibitory SK1 short hairpin RNA (shRNA), both of which reduce DENV infection, does not alter basal IRF1 mRNA or affect type I IFN stimulation of p-STAT1. Thus, cells genetically lacking SK1 can induce many responses normally following DENV infection, but have adaptive changes in IFNAR1 and IRF1 that compromise DENV-induced type I IFN responses. This suggests a biological link between SK1 and IFN-stimulated pathways. Other approaches to reduce SK1 activity, however, do not influence these important antiviral pathways but reduce infection and may be useful antiviral strategies.

13.
Virology ; 493: 60-74, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26999027

RESUMO

The spatiotemporal dynamics of Hepatitis C Virus (HCV) RNA localisation are poorly understood. To address this we engineered HCV genomes harbouring MS2 bacteriophage RNA stem-loops within the 3'-untranslated region to allow tracking of HCV RNA via specific interaction with a MS2-Coat-mCherry fusion protein. Despite the impact of these insertions on viral fitness, live imaging revealed that replication of tagged-HCV genomes induced specific redistribution of the mCherry-tagged-MS2-Coat protein to motile and static foci. Further analysis showed that HCV RNA was associated with NS5A in both static and motile structures while a subset of motile NS5A structures was devoid of HCV RNA. Further investigation of viral RNA traffic with respect to lipid droplets (LDs) revealed HCV RNA-positive structures in close association with LDs. These studies provide new insights into the dynamics of HCV RNA traffic with NS5A and LDs and provide a platform for future investigations of HCV replication and assembly.


Assuntos
Hepacivirus/metabolismo , RNA Viral/metabolismo , Proteínas não Estruturais Virais/metabolismo , Linhagem Celular , Citoplasma/virologia , Hepacivirus/genética , Sequências Repetidas Invertidas , Replicação Viral
14.
Virology ; 491: 27-44, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26874015

RESUMO

Hepatitis C virus (HCV) NS5A protein is essential for HCV RNA replication and virus assembly. Here we report the identification of NS5A phosphorylation sites Ser-222, Ser-235 and Thr-348 during an infectious HCV replication cycle and demonstrate that Ser-235 phosphorylation is essential for HCV RNA replication. Confocal microscopy revealed that both phosphoablatant (S235A) and phosphomimetic (S235D) mutants redistribute NS5A to large juxta-nuclear foci that display altered colocalization with known replication complex components. Using electron microscopy (EM) we found that S235D alters virus-induced membrane rearrangements while EM using 'APEX2'-tagged viruses demonstrated S235D-mediated enrichment of NS5A in irregular membranous foci. Finally, using a customized siRNA screen of candidate NS5A kinases and subsequent analysis using a phospho-specific antibody, we show that phosphatidylinositol-4 kinase III alpha (PI4KIIIα) is important for Ser-235 phosphorylation. We conclude that Ser-235 phosphorylation of NS5A is essential for HCV RNA replication and normal replication complex formation and is regulated by PI4KIIIα.


Assuntos
Hepacivirus/metabolismo , Hepatite C/virologia , Serina/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Motivos de Aminoácidos , Sequência de Aminoácidos , Linhagem Celular , Hepacivirus/química , Hepacivirus/genética , Humanos , Dados de Sequência Molecular , Fosforilação , RNA Viral/química , RNA Viral/genética , RNA Viral/metabolismo , Serina/genética , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética
15.
J Biomol Screen ; 10(8): 765-79, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16234342

RESUMO

Signal transduction by G-protein-coupled receptors (GPCRs) underpins a multitude of physiological processes. Ligand recognition by the receptor leads to activation of a generic molecular switch involving heterotrimeric G-proteins and guanine nucleotides. Signal transduction has been studied extensively with both cell-based systems and assays comprising isolated signaling components. Interest and commercial investment in GPCRs in areas such as drug targets, orphan receptors, high throughput screening, biosensors, and so on will focus greater attention on assay development to allow for miniaturization, ultra-high throughput and, eventually, microarray/biochip assay formats. Although cell-based assays are adequate for many GPCRs, it is likely that these formats will limit the development of higher density GPCR assay platforms mandatory for other applications. Stable, robust, cell-free signaling assemblies comprising receptor and appropriate molecular switching components will form the basis of future GPCR assay platforms adaptable for such applications as microarrays. The authors review current cell-free GPCR assay technologies and molecular biological approaches for construction of novel, functional GPCR assays.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Guanosina Trifosfato/metabolismo , Engenharia de Proteínas , Receptores Acoplados a Proteínas G/metabolismo , Bioensaio , Técnicas Biossensoriais , Sistema Livre de Células , Biologia Molecular , Nanotecnologia , Análise Serial de Proteínas , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais
16.
Antivir Ther ; 20(3): 271-80, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25222708

RESUMO

BACKGROUND: Genotype (gt)6 HCV is common amongst HCV-positive populations of the Asia-Pacific region but cell culture models for this gt have only recently been developed. Boceprevir (SCH503034) is a clinically available inhibitor of the HCV NS3 protein. We investigated the efficacy of boceprevir for inhibiting replication of a chimeric gt1b replicon encoding a gt6a NS3 protease and defined the development of mutations in the protease when boceprevir treatment was applied. METHODS: We constructed a chimeric gt1b subgenomic replicon encoding a gt6 NS3 protease (NS3p) sequence (gt6NS3p_gt1b). The boceprevir EC50 value against replication of this replicon was determined using quantitative reverse transcriptase PCR. Next-generation sequencing was used to identify nucleotide changes associated with boceprevir resistance. The replication capacities of chimeric replicons containing mutations associated with boceprevir resistance were determined by colony formation efficiency assays. RESULTS: The boceprevir EC50 value for the gt6NS3p_gt1b replicon was 535 ±79 nM. Boceprevir-resistant gt6NS3p_gt1b replicon cell lines could be selected and they demonstrated drug-associated amino acid changes that have previously been reported in other HCV gts. Interestingly, no mutations were observed at A156, a position defined for boceprevir resistance in gt1 NS3p, while mutation at N122, which is rarely reported in boceprevir-resistant gt1 proteases, was frequently observed. Re-introduction of these mutations into the chimeric replicon altered their replication capacity, ranging from complete abolishment of replication (A156T) to increasing replication capacity (V36A, N122S). This report provides the first characterization of gt6 HCV resistance to boceprevir. CONCLUSIONS: A chimeric HCV replicon encoding gt6 NS3 protease is sensitive to boceprevir and develops drug-resistant mutations at amino acid sites previously reported for other gts. Mutation at N122 also appears to be associated with boceprevir resistance in the gt6 NS3 protease.


Assuntos
Farmacorresistência Viral/genética , Genótipo , Hepacivirus/genética , Hepatite C/virologia , Mutação , Prolina/análogos & derivados , Replicon , Proteínas não Estruturais Virais/genética , Substituição de Aminoácidos , Antivirais/química , Antivirais/farmacologia , Antivirais/uso terapêutico , Linhagem Celular Tumoral , Hepatite C/tratamento farmacológico , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Conformação Molecular , Prolina/química , Prolina/farmacologia , Prolina/uso terapêutico , Recombinação Genética , Proteínas não Estruturais Virais/química , Replicação Viral
17.
Antivir Ther ; 17(6 Pt B): 1147-62, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23188771

RESUMO

Direct-acting antiviral (DAA) agents specifically target viral proteins. Two DAAs have been already been approved for the treatment of HCV infection and many more are in development. DAA treatment of HCV infection, however, leads to the selection of viral variants (produced by the error-prone HCV polymerase) that are resistant to the DAA agent in use. The selection of DAA-resistant HCV variants has been studied extensively in vitro and in vivo. Common amino acid substitution sites in each of the non-structural proteins are associated with DAA-resistance: D168, A155, A156 and V36 in NS3 protease; L31 and Y93 in NS5A; S282, S96, P495, M423, M414 and C316 in NS5B. In this review we cover the basic principles of DAA resistance, summarise the available resistance data for the various classes of DAAs and discuss the potential of DAA combination therapy for overcoming DAA-resistance, resulting in major advances in the treatment of HCV.


Assuntos
Antivirais/uso terapêutico , Farmacorresistência Viral , Hepacivirus/efeitos dos fármacos , Hepatite C Crônica/tratamento farmacológico , Proteínas não Estruturais Virais/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Substituição de Aminoácidos , Antivirais/farmacologia , Genoma Viral , Hepacivirus/enzimologia , Hepatite C Crônica/virologia , Humanos , Modelos Moleculares , RNA Polimerase Dependente de RNA/antagonistas & inibidores , RNA Polimerase Dependente de RNA/química , Proteínas não Estruturais Virais/química
18.
Nat Rev Urol ; 9(2): 111-8, 2012 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-22231291

RESUMO

XMRV was first described in 2006, when it was identified in samples isolated from prostate cancer tissues. However, studies have since shown that XMRV arose in the laboratory and was formed by genetic recombination between two viral genomes carried in the germline DNA of mice used during serial transplantation of the CWR22 prostate cancer xenograft. These new findings strongly imply that XMRV does not circulate in humans, but is only present in the laboratory. Thus, there is no reason to believe that it has any role in the etiology of prostate cancer or other diseases.


Assuntos
DNA Viral/análise , Neoplasias da Próstata/virologia , Vírus Relacionado ao Vírus Xenotrópico da Leucemia Murina/genética , Vírus Relacionado ao Vírus Xenotrópico da Leucemia Murina/isolamento & purificação , Animais , Humanos , Masculino
19.
PLoS One ; 7(5): e38190, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22666481

RESUMO

APOBEC3 proteins function to restrict the replication of retroviruses. One mechanism of this restriction is deamination of cytidines to uridines in (-) strand DNA, resulting in hypermutation of guanosines to adenosines in viral (+) strands. However, Moloney murine leukemia virus (MoMLV) is partially resistant to restriction by mouse APOBEC3 (mA3) and virtually completely resistant to mA3-induced hypermutation. In contrast, the sequences of MLV genomes that are in mouse DNA suggest that they were susceptible to mA3-induced deamination when they infected the mouse germline. We tested the possibility that sensitivity to mA3 restriction and to deamination resides in the viral gag gene. We generated a chimeric MLV in which the gag gene was from an endogenous MLV in the mouse germline, while the remainder of the viral genome was from MoMLV. This chimera was fully infectious but its response to mA3 was indistinguishable from that of MoMLV. Thus, the Gag protein does not seem to control the sensitivity of MLVs to mA3. We also found that MLVs inactivated by mA3 do not synthesize viral DNA upon infection; thus mA3 restriction of MLV occurs before or at reverse transcription. In contrast, HIV-1 restricted by mA3 and MLVs restricted by human APOBEC3G do synthesize DNA; these DNAs exhibit APOBEC3-induced hypermutation.


Assuntos
Citidina Desaminase/metabolismo , Vírus da Leucemia Murina/fisiologia , Replicação Viral , Animais , Sequência de Bases , Citidina Desaminase/genética , DNA Viral/biossíntese , DNA Viral/genética , Produtos do Gene gag/genética , Humanos , Hibridização Genética , Vírus da Leucemia Murina/genética , Vírus da Leucemia Murina/metabolismo , Vírus da Leucemia Murina/patogenicidade , Camundongos , Vírus da Leucemia Murina de Moloney/genética , Transfecção
20.
PLoS One ; 6(6): e20874, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21698104

RESUMO

A newly discovered gammaretrovirus, termed XMRV, was recently reported to be present in the prostate cancer cell line CWR22Rv1. Using a combination of both immunohistochemistry with broadly-reactive murine leukemia virus (MLV) anti-sera and PCR, we determined if additional prostate cancer or other cell lines contain XMRV or MLV-related viruses. Our study included a total of 72 cell lines, which included 58 of the 60 human cancer cell lines used in anticancer drug screens and maintained at the NCI-Frederick (NCI-60). We have identified gammaretroviruses in two additional prostate cancer cell lines: LAPC4 and VCaP, and show that these viruses are replication competent. Viral genome sequencing identified the virus in LAPC4 and VCaP as nearly identical to another known xenotropic MLV, Bxv-1. We also identified a gammaretrovirus in the non-small-cell lung carcinoma cell line EKVX. Prostate cancer cell lines appear to have a propensity for infection with murine gammaretroviruses, and we propose that this may be in part due to cell line establishment by xenograft passage in immunocompromised mice. It is unclear if infection with these viruses is necessary for cell line establishment, or what confounding role they may play in experiments performed with these commonly used lines. Importantly, our results suggest a need for regular screening of cancer cell lines for retroviral "contamination", much like routine mycoplasma testing.


Assuntos
Gammaretrovirus/fisiologia , Neoplasias da Próstata/virologia , Replicação Viral , Animais , Sequência de Bases , Linhagem Celular Tumoral , Primers do DNA , Gammaretrovirus/genética , Genoma Viral , Humanos , Masculino , Camundongos , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA