Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Cell ; 169(2): 191-202.e11, 2017 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-28388405

RESUMO

RNA editing, a post-transcriptional process, allows the diversification of proteomes beyond the genomic blueprint; however it is infrequently used among animals for this purpose. Recent reports suggesting increased levels of RNA editing in squids thus raise the question of the nature and effects of these events. We here show that RNA editing is particularly common in behaviorally sophisticated coleoid cephalopods, with tens of thousands of evolutionarily conserved sites. Editing is enriched in the nervous system, affecting molecules pertinent for excitability and neuronal morphology. The genomic sequence flanking editing sites is highly conserved, suggesting that the process confers a selective advantage. Due to the large number of sites, the surrounding conservation greatly reduces the number of mutations and genomic polymorphisms in protein-coding regions. This trade-off between genome evolution and transcriptome plasticity highlights the importance of RNA recoding as a strategy for diversifying proteins, particularly those associated with neural function. PAPERCLIP.


Assuntos
Evolução Biológica , Cefalópodes/genética , Edição de RNA , Transcriptoma , Adenosina Desaminase/metabolismo , Sequência de Aminoácidos , Animais , Cefalópodes/classificação , Cefalópodes/metabolismo , Sistema Nervoso/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Alinhamento de Sequência
2.
RNA ; 30(7): 749-759, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38575346

RESUMO

Cancer cells can manipulate immune cells and escape from the immune system response. Quantifying the molecular changes that occur when an immune cell touches a tumor cell can increase our understanding of the underlying mechanisms. Recently, it became possible to perform such measurements in situ-for example, using expansion sequencing, which enabled in situ sequencing of genes with super-resolution. We systematically examined whether individual immune cells from specific cell types express genes differently when in physical proximity to individual tumor cells. First, we demonstrated that a dense mapping of genes in situ can be used for the segmentation of cell bodies in 3D, thus improving our ability to detect likely touching cells. Next, we used three different computational approaches to detect the molecular changes that are triggered by proximity: differential expression analysis, tree-based machine learning classifiers, and matrix factorization analysis. This systematic analysis revealed tens of genes, in specific cell types, whose expression separates immune cells that are proximal to tumor cells from those that are not proximal, with a significant overlap between the different detection methods. Remarkably, an order of magnitude more genes are triggered by proximity to tumor cells in CD8 T cells compared to CD4 T cells, in line with the ability of CD8 T cells to directly bind major histocompatibility complex (MHC) class I on tumor cells. Thus, in situ sequencing of an individual biopsy can be used to detect genes likely involved in immune-tumor cell-cell interactions. The data used in this manuscript and the code of the InSituSeg, machine learning, cNMF, and Moran's I methods are publicly available at doi:10.5281/zenodo.7497981.


Assuntos
Biologia Computacional , Humanos , Biologia Computacional/métodos , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/patologia , Regulação Neoplásica da Expressão Gênica , Aprendizado de Máquina , Perfilação da Expressão Gênica/métodos
3.
Molecules ; 29(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38202859

RESUMO

MolOptimizer is a user-friendly computational toolkit designed to streamline the hit-to-lead optimization process in drug discovery. MolOptimizer extracts features and trains machine learning models using a user-provided, labeled, and small-molecule dataset to accurately predict the binding values of new small molecules that share similar scaffolds with the target in focus. Hosted on the Azure web-based server, MolOptimizer emerges as a vital resource, accelerating the discovery and development of novel drug candidates with improved binding properties.


Assuntos
Desenho de Fármacos , Descoberta de Drogas , Aprendizado de Máquina
4.
Nucleic Acids Res ; 49(10): e58, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33693773

RESUMO

We present barcoded oligonucleotides ligated on RNA amplified for multiplexed and parallel insitu analyses (BOLORAMIS), a reverse transcription-free method for spatially-resolved, targeted, in situ RNA identification of single or multiple targets. BOLORAMIS was demonstrated on a range of cell types and human cerebral organoids. Singleplex experiments to detect coding and non-coding RNAs in human iPSCs showed a stem-cell signature pattern. Specificity of BOLORAMIS was found to be 92% as illustrated by a clear distinction between human and mouse housekeeping genes in a co-culture system, as well as by recapitulation of subcellular localization of lncRNA MALAT1. Sensitivity of BOLORAMIS was quantified by comparing with single molecule FISH experiments and found to be 11%, 12% and 35% for GAPDH, TFRC and POLR2A, respectively. To demonstrate BOLORAMIS for multiplexed gene analysis, we targeted 96 mRNAs within a co-culture of iNGN neurons and HMC3 human microglial cells. We used fluorescence in situ sequencing to detect error-robust 8-base barcodes associated with each of these genes. We then used this data to uncover the spatial relationship among cells and transcripts by performing single-cell clustering and gene-gene proximity analyses. We anticipate the BOLORAMIS technology for in situ RNA detection to find applications in basic and translational research.


Assuntos
Perfilação da Expressão Gênica/métodos , Hibridização in Situ Fluorescente/métodos , Oligonucleotídeos/química , RNA/análise , Análise de Célula Única/métodos , Animais , Linhagem Celular , Humanos , Camundongos
5.
Glob Chang Biol ; 28(10): 3349-3364, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35218086

RESUMO

Coral reefs are in global decline due to climate change and anthropogenic influences (Hughes et al., Conservation Biology, 27: 261-269, 2013). Near coastal cities or other densely populated areas, coral reefs face a range of additional challenges. While considerable progress has been made in understanding coral responses to acute individual stressors (Dominoni et al., Nature Ecology & Evolution, 4: 502-511, 2020), the impacts of chronic exposure to varying combinations of sensory pollutants are largely unknown. To investigate the impacts of urban proximity on corals, we conducted a year-long in-natura study-incorporating sampling at diel, monthly, and seasonal time points-in which we compared corals from an urban area to corals from a proximal non-urban area. Here we reveal that despite appearing relatively healthy, natural biorhythms and environmental sensory systems were extensively disturbed in corals from the urban environment. Transcriptomic data indicated poor symbiont performance, disturbance to gametogenic cycles, and loss or shifted seasonality of vital biological processes. Altered seasonality patterns were also observed in the microbiomes of the urban coral population, signifying the impact of urbanization on the holobiont, rather than the coral host alone. These results should raise alarm regarding the largely unknown long-term impacts of sensory pollution on the resilience and survival of coral reefs close to coastal communities.


Assuntos
Antozoários , Microbiota , Animais , Antozoários/fisiologia , Recifes de Corais , Periodicidade , Urbanização
6.
Int J Mol Sci ; 23(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35409169

RESUMO

Behavioral neuroscience underwent a technology-driven revolution with the emergence of machine-vision and machine-learning technologies. These technological advances facilitated the generation of high-resolution, high-throughput capture and analysis of complex behaviors. Therefore, behavioral neuroscience is becoming a data-rich field. While behavioral researchers use advanced computational tools to analyze the resulting datasets, the search for robust and standardized analysis tools is still ongoing. At the same time, the field of genomics exploded with a plethora of technologies which enabled the generation of massive datasets. This growth of genomics data drove the emergence of powerful computational approaches to analyze these data. Here, we discuss the composition of a large behavioral dataset, and the differences and similarities between behavioral and genomics data. We then give examples of genomics-related tools that might be of use for behavioral analysis and discuss concepts that might emerge when considering the two fields together.


Assuntos
Genômica , Genômica/métodos
7.
J Pineal Res ; 69(3): e12673, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32533862

RESUMO

The website and database https://snengs.nichd.nih.gov provides RNA sequencing data from multi-species analysis of the pineal glands from zebrafish (Danio rerio), chicken (White Leghorn), rat (Rattus novegicus), mouse (Mus musculus), rhesus macaque (Macaca mulatta), and human (Homo sapiens); in most cases, retinal data are also included along with results of the analysis of a mixture of RNA from tissues. Studies cover day and night conditions; in addition, a time series over multiple hours, a developmental time series and pharmacological experiments on rats are included. The data have been uniformly re-processed using the latest methods and assemblies to allow for comparisons between experiments and to reduce processing differences. The website presents search functionality, graphical representations, Excel tables, and track hubs of all data for detailed visualization in the UCSC Genome Browser. As more data are collected from investigators and improved genomes become available in the future, the website will be updated. This database is in the public domain and elements can be reproduced by citing the URL and this report. This effort makes the results of 21st century transcriptome profiling widely available in a user-friendly format that is expected to broadly influence pineal research.


Assuntos
Bases de Dados de Ácidos Nucleicos , Regulação da Expressão Gênica , Internet , Glândula Pineal/metabolismo , Retina/metabolismo , Animais , Galinhas , Humanos , Macaca mulatta , Camundongos , Ratos , Peixe-Zebra
8.
Nucleic Acids Res ; 46(4): 2045-2059, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29267965

RESUMO

Recent studies have reported the emerging role of microRNAs (miRNAs) in human cancers. We systematically characterized miRNA expression and editing in the human brain, which displays the highest number of A-to-I RNA editing sites among human tissues, and in de novo glioblastoma brain cancer. We identified 299 miRNAs altered in their expression and 24 miRNAs differently edited in human brain compared to glioblastoma tissues. We focused on the editing site within the miR-589-3p seed. MiR-589-3p is a unique miRNA almost fully edited (∼100%) in normal brain and with a consistent editing decrease in glioblastoma. The edited version of miR-589-3p inhibits glioblastoma cell proliferation, migration and invasion, while the unedited version boosts cell proliferation and motility/invasion, thus being a potential cancer-promoting factor. We demonstrated that the editing of this miRNA is mediated by ADAR2, and retargets miR-589-3p from the tumor-suppressor PCDH9 to ADAM12, which codes for the metalloproteinase 12 promoting glioblastoma invasion. Overall, our study dissects the role of a unique brain-specific editing site within miR-589-3p, with important anticancer features, and highlights the importance of RNA editing as an essential player not only for diversifying the genomic message but also for correcting not-tolerable/critical genomic coding sites.


Assuntos
Neoplasias Encefálicas/genética , Glioblastoma/genética , MicroRNAs/metabolismo , Edição de RNA , Adenosina/metabolismo , Adenosina Desaminase/metabolismo , Adulto , Encéfalo/metabolismo , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular , Feminino , Regulação Neoplásica da Expressão Gênica , Glioblastoma/enzimologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Células HEK293 , Humanos , Inosina/metabolismo , Masculino , MicroRNAs/química , Invasividade Neoplásica , Proteínas de Ligação a RNA/metabolismo
9.
Nat Methods ; 13(8): 679-84, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27376770

RESUMO

The ability to image RNA identity and location with nanoscale precision in intact tissues is of great interest for defining cell types and states in normal and pathological biological settings. Here, we present a strategy for expansion microscopy of RNA. We developed a small-molecule linker that enables RNA to be covalently attached to a swellable polyelectrolyte gel synthesized throughout a biological specimen. Then, postexpansion, fluorescent in situ hybridization (FISH) imaging of RNA can be performed with high yield and specificity as well as single-molecule precision in both cultured cells and intact brain tissue. Expansion FISH (ExFISH) separates RNAs and supports amplification of single-molecule signals (i.e., via hybridization chain reaction) as well as multiplexed RNA FISH readout. ExFISH thus enables super-resolution imaging of RNA structure and location with diffraction-limited microscopes in thick specimens, such as intact brain tissue and other tissues of importance to biology and medicine.


Assuntos
Acrilamidas/química , Encéfalo/metabolismo , Hibridização in Situ Fluorescente/métodos , Microscopia de Fluorescência/métodos , Nanotecnologia/métodos , Imagem Óptica/métodos , RNA/análise , Animais , Encéfalo/citologia , Células Cultivadas , Células HeLa , Humanos , Processamento de Imagem Assistida por Computador/métodos , Camundongos , Sondas de Oligonucleotídeos/química , RNA/química , RNA/metabolismo
10.
PLoS Genet ; 12(11): e1006445, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27870848

RESUMO

The master circadian clock in fish has been considered to reside in the pineal gland. This dogma is challenged, however, by the finding that most zebrafish tissues contain molecular clocks that are directly reset by light. To further examine the role of the pineal gland oscillator in the zebrafish circadian system, we generated a transgenic line in which the molecular clock is selectively blocked in the melatonin-producing cells of the pineal gland by a dominant-negative strategy. As a result, clock-controlled rhythms of melatonin production in the adult pineal gland were disrupted. Moreover, transcriptome analysis revealed that the circadian expression pattern of the majority of clock-controlled genes in the adult pineal gland is abolished. Importantly, circadian rhythms of behavior in zebrafish larvae were affected: rhythms of place preference under constant darkness were eliminated, and rhythms of locomotor activity under constant dark and constant dim light conditions were markedly attenuated. On the other hand, global peripheral molecular oscillators, as measured in whole larvae, were unaffected in this model. In conclusion, characterization of this novel transgenic model provides evidence that the molecular clock in the melatonin-producing cells of the pineal gland plays a key role, possibly as part of a multiple pacemaker system, in modulating circadian rhythms of behavior.


Assuntos
Relógios Circadianos/genética , Ritmo Circadiano/genética , Locomoção/genética , Melatonina/biossíntese , Animais , Ritmo Circadiano/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escuridão , Regulação da Expressão Gênica no Desenvolvimento , Larva/genética , Larva/crescimento & desenvolvimento , Luz , Locomoção/fisiologia , Melatonina/genética , Glândula Pineal/crescimento & desenvolvimento , Glândula Pineal/metabolismo , Transcriptoma/genética , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra
11.
Mol Biol Evol ; 34(8): 1890-1901, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28453786

RESUMO

The highly conserved ADAR enzymes, found in all multicellular metazoans, catalyze the editing of mRNA transcripts by the deamination of adenosines to inosines. This type of editing has two general outcomes: site specific editing, which frequently leads to recoding, and clustered editing, which is usually found in transcribed genomic repeats. Here, for the first time, we looked for both editing of isolated sites and clustered, non-specific sites in a basal metazoan, the coral Acropora millepora during spawning event, in order to reveal its editing pattern. We found that the coral editome resembles the mammalian one: it contains more than 500,000 sites, virtually all of which are clustered in non-coding regions that are enriched for predicted dsRNA structures. RNA editing levels were increased during spawning and increased further still in newly released gametes. This may suggest that editing plays a role in introducing variability in coral gametes.


Assuntos
Adenosina Desaminase/genética , Antozoários/genética , Edição de RNA/genética , Adenosina Desaminase/metabolismo , Animais , Antozoários/metabolismo , Sequência de Bases , Evolução Molecular , Genoma , Genômica , Humanos , Mamíferos/genética , Filogenia , RNA , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética
12.
Biochem Biophys Res Commun ; 473(4): 1211-1217, 2016 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-27079236

RESUMO

PURPOSE: UNC119 proteins are involved in G protein trafficking in mouse retinal photoreceptors and Caenorhabditis elegans olfactory neurons. An Unc119 null allele is associated with cone-rod dystrophy in mouse, but the mechanism leading to disease is not understood. We studied the role of Unc119 paralogs and Arl3l2 in zebrafish vision and retinal organization resulting from unc119c and arl3l2 knockdown. METHODS: Zebrafish unc119c was amplified by PCR from retina and pineal gland cDNA. Its expression pattern in the eye and pineal gland was determined by whole-mount in-situ hybridization. unc119c and arl3l2 were knocked down using morpholino-modified oligonucleotides (MO). Their visual function was assessed with a quantitative optomotor assay on 6 days post-fertilization larvae. Retinal morphology was analyzed using immunohistochemistry with anti-cone arrestin (zpr-1) and anti-cone transducin-α (GNAT2) antibodies. RESULTS: The zebrafish genome contains four genes encoding unc119 paralogs located on different chromosomes. The exon/intron arrangements of these genes are identical. Three Unc119 paralogs are expressed in the zebrafish retina, termed Unc119a-c. Based on sequence similarity, Unc119a and Unc119b are orthologs of mammalian UNC119a and UNC119b, respectively. A third, Unc119c, is unique and not present in mammals. Whole mount in-situ hybridization revealed that unc119a and unc119b RNA are ubiquitously expressed in the CNS, and unc119c is specifically expressed in photoreceptive tissues (pineal gland and retina). A Unc119 interactant, Arl3l2 also localizes to the pineal gland and the retina. As measured by the optomotor response, unc119c and arl3l2 knockdown resulted in significantly lower vision compared to wild-type zebrafish larvae and control morpholino (MO). Immunohistological analysis with anti-cone transducin and anti-cone arrestin (zpr-1) indicates that knockdown of unc119c leads to photoreceptor degeneration mostly affecting cones. CONCLUSIONS: Our results suggest that Unc119c is the only Unc119 paralog that is highly specific to the retina in zebrafish. Unc119c and Arl3l2 proteins are important for the function of cones.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Oftalmopatias Hereditárias/complicações , Oftalmopatias Hereditárias/fisiopatologia , Células Fotorreceptoras Retinianas Cones/metabolismo , Distrofias Retinianas/complicações , Distrofias Retinianas/fisiopatologia , Transtornos da Visão/etiologia , Transtornos da Visão/fisiopatologia , Animais , Oftalmopatias Hereditárias/patologia , Técnicas de Silenciamento de Genes , Células Fotorreceptoras Retinianas Cones/patologia , Distrofias Retinianas/patologia , Transtornos da Visão/patologia , Peixe-Zebra
13.
Bioinformatics ; 31(15): 2568-70, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25840043

RESUMO

DREAM: detecting RNA editing associated with microRNAs, is a webserver for the identification of mature microRNA editing events using deep sequencing data. Raw microRNA sequencing reads can be provided as input, the reads are aligned against the genome and custom scripts process the data, search for potential editing sites and assess the statistical significance of the findings. The output is a text file with the location and the statistical description of all the putative editing sites detected.


Assuntos
Genoma Humano , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Internet , MicroRNAs/genética , Edição de RNA/genética , Software , Humanos
14.
Nucleic Acids Res ; 42(6): 3750-67, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24423866

RESUMO

Light constitutes a primary signal whereby endogenous circadian clocks are synchronized ('entrained') with the day/night cycle. The molecular mechanisms underlying this vital process are known to require gene activation, yet are incompletely understood. Here, the light-induced transcriptome in the zebrafish central clock organ, the pineal gland, was characterized by messenger RNA (mRNA) sequencing (mRNA-seq) and microarray analyses, resulting in the identification of multiple light-induced mRNAs. Interestingly, a considerable portion of the molecular clock (14 genes) is light-induced in the pineal gland. Four of these genes, encoding the transcription factors dec1, reverbb1, e4bp4-5 and e4bp4-6, differentially affected clock- and light-regulated promoter activation, suggesting that light-input is conveyed to the core clock machinery via diverse mechanisms. Moreover, we show that dec1, as well as the core clock gene per2, is essential for light-entrainment of rhythmic locomotor activity in zebrafish larvae. Additionally, we used microRNA (miRNA) sequencing (miR-seq) and identified pineal-enhanced and light-induced miRNAs. One such miRNA, miR-183, is shown to downregulate e4bp4-6 mRNA through a 3'UTR target site, and importantly, to regulate the rhythmic mRNA levels of aanat2, the key enzyme in melatonin synthesis. Together, this genome-wide approach and functional characterization of light-induced factors indicate a multi-level regulation of the circadian clockwork by light.


Assuntos
Relógios Circadianos/genética , Luz , Ativação Transcricional/efeitos da radiação , Transcriptoma/efeitos da radiação , Peixe-Zebra/genética , Regiões 3' não Traduzidas , Animais , Células HEK293 , Humanos , Locomoção , Redes e Vias Metabólicas/genética , MicroRNAs/biossíntese , MicroRNAs/metabolismo , Glândula Pineal/metabolismo , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo
15.
Genome Res ; 22(8): 1533-40, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22499667

RESUMO

Adenosine-to-inosine (A-to-I) editing modifies RNA transcripts from their genomic blueprint. A prerequisite for this process is a double-stranded RNA (dsRNA) structure. Such dsRNAs are formed as part of the microRNA (miRNA) maturation process, and it is therefore expected that miRNAs are affected by A-to-I editing. Editing of miRNAs has the potential to add another layer of complexity to gene regulation pathways, especially if editing occurs within the miRNA-mRNA recognition site. Thus, it is of interest to study the extent of this phenomenon. Current reports in the literature disagree on its extent; while some reports claim that it may be widespread, others deem the reported events as rare. Utilizing a next-generation sequencing (NGS) approach supplemented by an extensive bioinformatic analysis, we were able to systematically identify A-to-I editing events in mature miRNAs derived from human brain tissues. Our algorithm successfully identified many of the known editing sites in mature miRNAs and revealed 17 novel human sites, 12 of which are in the recognition sites of the miRNAs. We confirmed most of the editing events using in vitro ADAR overexpression assays. The editing efficiency of most sites identified is very low. Similar results are obtained for publicly available data sets of mouse brain-regions tissues. Thus, we find that A-to-I editing does alter several miRNAs, but it is not widespread.


Assuntos
Adenosina/metabolismo , Encéfalo/metabolismo , Biologia Computacional/métodos , MicroRNAs/metabolismo , Edição de RNA , Adenosina/genética , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Algoritmos , Bases de Dados Genéticas , Genoma Humano , Humanos , Inosina/genética , Inosina/metabolismo , MicroRNAs/genética , Proteínas de Ligação a RNA , Análise de Sequência de RNA/métodos
17.
PLoS Genet ; 8(12): e1003116, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23284293

RESUMO

A wide variety of biochemical, physiological, and molecular processes are known to have daily rhythms driven by an endogenous circadian clock. While extensive research has greatly improved our understanding of the molecular mechanisms that constitute the circadian clock, the links between this clock and dependent processes have remained elusive. To address this gap in our knowledge, we have used RNA sequencing (RNA-seq) and DNA microarrays to systematically identify clock-controlled genes in the zebrafish pineal gland. In addition to a comprehensive view of the expression pattern of known clock components within this master clock tissue, this approach has revealed novel potential elements of the circadian timing system. We have implicated one rhythmically expressed gene, camk1gb, in connecting the clock with downstream physiology of the pineal gland. Remarkably, knockdown of camk1gb disrupts locomotor activity in the whole larva, even though it is predominantly expressed within the pineal gland. Therefore, it appears that camk1gb plays a role in linking the pineal master clock with the periphery.


Assuntos
Relógios Circadianos , Ritmo Circadiano/genética , Glândula Pineal , Proteínas de Peixe-Zebra , Animais , Relógios Circadianos/genética , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Larva/genética , Larva/crescimento & desenvolvimento , Análise de Sequência com Séries de Oligonucleotídeos , Glândula Pineal/crescimento & desenvolvimento , Glândula Pineal/metabolismo , Glândula Pineal/fisiologia , Análise de Sequência de RNA , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/fisiologia
18.
Genome Res ; 21(9): 1506-11, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21750102

RESUMO

Second-generation sequencing is gradually becoming the method of choice for miRNA detection and expression profiling. Given the relatively small number of miRNAs and improvements in DNA sequencing technology, studying miRNA expression profiles of multiple samples in a single flow cell lane becomes feasible. Multiplexing strategies require marking each miRNA library with a DNA barcode. Here we report that barcodes introduced through adapter ligation confer significant bias on miRNA expression profiles. This bias is much higher than the expected Poisson noise and masks significant expression differences between miRNA libraries. This bias can be eliminated by adding barcodes during PCR amplification of libraries. The accuracy of miRNA expression measurement in multiplexed experiments becomes a function of sample number.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/metabolismo , Análise de Sequência de RNA , Animais , Viés , Análise por Conglomerados , Perfilação da Expressão Gênica , Humanos , Camundongos , Sitios de Sequências Rotuladas
19.
J Immunol ; 189(10): 4890-9, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23066154

RESUMO

To study structural changes that occur in Abs upon Ag binding, we systematically compared free and bound structures of all 141 crystal structures of the 49 Abs that were solved in these two forms. We found that many structural changes occur far from the Ag binding site. Some of them may constitute a mechanism for the recently suggested allosteric effects in Abs. Within the binding site itself, CDR-H3 is the only element that shows significant binding-related conformational changes; however, this occurs in only one third of the Abs. Beyond the binding site, Ag binding is associated with changes in the relative orientation of the H and L chains in both the variable and constant domains. An even larger change occurs in the elbow angle between the variable and the constant domains, and it is significantly larger for binding of big Ags than for binding of small ones. The most consistent and substantial conformational changes occur in a loop in the H chain constant domain. This loop is implicated in the interaction between the H and L chains, is often intrinsically disordered, and is involved in complement binding. Hence, we suggest that it may have a role in Ab function. These findings provide structural insight into the recently proposed allosteric effects in Abs.


Assuntos
Antígenos/química , Sítios de Ligação de Anticorpos , Bases de Dados de Proteínas , Cadeias Pesadas de Imunoglobulinas/química , Cadeias Leves de Imunoglobulina/química , Animais , Antígenos/genética , Antígenos/imunologia , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias Leves de Imunoglobulina/genética , Cadeias Leves de Imunoglobulina/imunologia , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína
20.
J Biol Chem ; 287(48): 40173-85, 2012 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-23071114

RESUMO

BACKGROUND: ADNP is vital for embryonic development. Is this function conserved for the homologous protein ADNP2? RESULTS: Down-regulation/silencing of ADNP or ADNP2 in zebrafish embryos or mouse erythroleukemia cells inhibited erythroid maturation, with ADNP directly associating with the ß-globin locus control region. CONCLUSION: ADNPs are novel molecular regulators of erythropoiesis. SIGNIFICANCE: New regulators of globin synthesis are suggested. Activity-dependent neuroprotective protein (ADNP) and its homologue ADNP2 belong to a homeodomain, the zinc finger-containing protein family. ADNP is essential for mouse embryonic brain formation. ADNP2 is associated with cell survival, but its role in embryogenesis has not been evaluated. Here, we describe the use of the zebrafish model to elucidate the developmental roles of ADNP and ADNP2. Although we expected brain defects, we were astonished to discover that the knockdown zebrafish embryos were actually lacking blood and suffered from defective hemoglobin production. Evolutionary conservation was established using mouse erythroleukemia (MEL) cells, a well studied erythropoiesis model, in which silencing of ADNP or ADNP2 produced similar results as in zebrafish. Exogenous RNA encoding ADNP/ADNP2 rescued the MEL cell undifferentiated state, demonstrating phenotype specificity. Brg1, an ADNP-interacting chromatin-remodeling protein involved in erythropoiesis through regulation of the globin locus, was shown here to interact also with ADNP2. Furthermore, chromatin immunoprecipitation revealed recruitment of ADNP, similar to Brg1, to the mouse ß-globin locus control region in MEL cells. This recruitment was apparently diminished upon dimethyl sulfoxide (DMSO)-induced erythrocyte differentiation compared with the nondifferentiated state. Importantly, exogenous RNA encoding ADNP/ADNP2 significantly increased ß-globin expression in MEL cells in the absence of any other differentiation factors. Taken together, our results reveal an ancestral role for the ADNP protein family in maturation and differentiation of the erythroid lineage, associated with direct regulation of ß-globin expression.


Assuntos
Células Eritroides/citologia , Eritropoese , Evolução Molecular , Família Multigênica , Proteínas do Tecido Nervoso/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Linhagem Celular Tumoral , Células Eritroides/metabolismo , Humanos , Camundongos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA