Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 43(8): 1533-1548, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37381989

RESUMO

BACKGROUND: Vascular calcification (VC) is a highly prevalent complication of chronic kidney disease (CKD) and is associated with the higher morbidity-mortality of patients with CKD. VDR (vitamin D receptor) has been proposed to play a role in the osteoblastic differentiation of vascular smooth muscle cells (VSMCs), but the involvement of vitamin D in VC associated to CKD is controversial. Our aim was to determine the role of local vitamin D signaling in VSMCs during CKD-induced VC. METHODS: We used epigastric arteries from CKD-affected patients and individuals with normal renal function, alongside an experimental model of CKD-induced VC in mice with conditional deletion of VDR in VSMC. In vitro, experiments in VSMC with or without VDR incubated in calcification media were also used. RESULTS: CKD-affected patients and mice with CKD showed an increase in VC, together with increased arterial expression of VDR compared with controls with normal renal function. Conditional gene silencing of VDR in VSMCs led to a significant decrease of VC in the mouse model of CKD, despite similar levels of renal impairment and serum calcium and phosphate levels. This was accompanied by lower arterial expression of OPN (osteopontin) and lamin A and higher expression of SOST (sclerostin). Furthermore, CKD-affected mice showed a reduction of miR-145a expression in calcified arteries, which was significantly recovered in animals with deletion of VDR in VSMC. In vitro, the absence of VDR prevented VC, inhibited the increase of OPN, and reestablished the expression of miR-145a. Forced expression of miR-145a in vitro in VDRwt VSMCs blunted VC and decreased OPN levels. CONCLUSIONS: Our study provides evidence proving that inhibition of local VDR signaling in VSMCs could prevent VC in CKD and indicates a possible role for miR-145a in this process.


Assuntos
MicroRNAs , Insuficiência Renal Crônica , Calcificação Vascular , Camundongos , Animais , Músculo Liso Vascular/metabolismo , Receptores de Calcitriol/genética , Calcificação Vascular/genética , Calcificação Vascular/prevenção & controle , Rim/metabolismo , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Vitamina D/metabolismo , Miócitos de Músculo Liso/metabolismo
2.
Int J Mol Sci ; 25(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38339121

RESUMO

Shortly after the discovery of Klotho, interest grew in its potential role in chronic kidney disease (CKD). There are three isoforms of the Klotho protein: αKlotho, ßKlotho and γKlotho. This review will focus on αKlotho due to its relevance as a biomarker in CKD. αKlotho is synthesized mainly in the kidneys, but it can be released into the bloodstream and urine as soluble Klotho (sKlotho), which undertakes systemic actions, independently or in combination with FGF23. It is usually accepted that sKlotho levels are reduced early in CKD and that lower levels of sKlotho might be associated with the main chronic kidney disease-mineral bone disorders (CKD-MBDs): cardiovascular and bone disease. However, as results are inconsistent, the applicability of sKlotho as a CKD-MBD biomarker is still a matter of controversy. Much of the inconsistency can be explained due to low sample numbers, the low quality of clinical studies, the lack of standardized assays to assess sKlotho and a lack of consensus on sample processing, especially in urine. In recent decades, because of our longer life expectancies, the prevalence of accelerated-ageing diseases, such as CKD, has increased. Exercise, social interaction and caloric restriction are considered key factors for healthy ageing. While exercise and social interaction seem to be related to higher serum sKlotho levels, it is not clear whether serum sKlotho might be influenced by caloric restriction. This review focuses on the possible role of sKlotho as a biomarker in CKD-MBD, highlighting the difference between solid knowledge and areas requiring further research, including the role of sKlotho in healthy ageing.


Assuntos
Distúrbio Mineral e Ósseo na Doença Renal Crônica , Envelhecimento Saudável , Proteínas Klotho , Humanos , Biomarcadores , Distúrbio Mineral e Ósseo na Doença Renal Crônica/diagnóstico , Fatores de Crescimento de Fibroblastos , Glucuronidase , Envelhecimento Saudável/metabolismo , Minerais , Insuficiência Renal Crônica/complicações , Proteínas Klotho/sangue , Proteínas Klotho/metabolismo
3.
Int J Mol Sci ; 25(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38891922

RESUMO

Vascular calcification has a global health impact that is closely linked to bone loss. The Receptor Activator of Nuclear Factor Kappa B (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) system, fundamental for bone metabolism, also plays an important role in vascular calcification. The Leucine-rich repeat-containing G-protein-coupled receptor 4 (LGR4), a novel receptor for RANKL, regulates bone remodeling, and it appears to be involved in vascular calcification. Besides RANKL, LGR4 interacts with R-spondins (RSPOs), which are known for their roles in bone but are less understood in vascular calcification. Studies were conducted in rats with chronic renal failure fed normal or high phosphorus diets for 18 weeks, with and without control of circulating parathormone (PTH) levels, resulting in different degrees of aortic calcification. Additionally, vascular smooth muscle cells (VSMCs) were cultured under non-calcifying (1 mM phosphate) and calcifying (3 mM phosphate) media with different concentrations of PTH. To explore the role of RANKL in VSMC calcification, increasing concentrations of soluble RANKL were added to non-calcifying and calcifying media. The effects mediated by RANKL binding to its receptor LGR4 were investigated by silencing the LGR4 receptor in VSMCs. Furthermore, the gene expression of the RANK/RANKL/OPG system and the ligands of LGR4 was assessed in human epigastric arteries obtained from kidney transplant recipients with calcification scores (Kauppila Index). Increased aortic calcium in rats coincided with elevated systolic blood pressure, upregulated Lgr4 and Rankl gene expression, downregulated Opg gene expression, and higher serum RANKL/OPG ratio without changes in Rspos gene expression. Elevated phosphate in vitro increased calcium content and expression of Rankl and Lgr4 while reducing Opg. Elevated PTH in the presence of high phosphate exacerbated the increase in calcium content. No changes in Rspos were observed under the conditions employed. The addition of soluble RANKL to VSMCs induced genotypic differentiation and calcification, partly prevented by LGR4 silencing. In the epigastric arteries of individuals presenting vascular calcification, the gene expression of RANKL was higher. While RSPOs show minimal impact on VSMC calcification, RANKL, interacting with LGR4, drives osteogenic differentiation in VSMCs, unveiling a novel mechanism beyond RANKL-RANK binding.


Assuntos
Músculo Liso Vascular , Ligante RANK , Receptores Acoplados a Proteínas G , Calcificação Vascular , Ligante RANK/metabolismo , Ligante RANK/genética , Animais , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Calcificação Vascular/metabolismo , Calcificação Vascular/patologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Ratos , Humanos , Masculino , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Osteoprotegerina/metabolismo , Osteoprotegerina/genética , Hormônio Paratireóideo/metabolismo , Células Cultivadas , Ratos Sprague-Dawley
4.
Nephrol Dial Transplant ; 38(7): 1729-1740, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-36722155

RESUMO

INTRODUCTION: MicroRNAs (miRs) regulate vascular calcification (VC), and their quantification may contribute to suspicion of the presence of VC. METHODS: The study was performed in four phases. Phase 1: miRs sequencing of rat calcified and non-calcified aortas. Phase 2: miRs with the highest rate of change, plus miR-145 [the most abundant miR in vascular smooth muscle cells (VSMCs)], were validated in aortas and serum from rats with and without VC. Phase 3: the selected miRs were analyzed in epigastric arteries from kidney donors and recipients, and serum samples from general population. Phase 4: VSMCs were exposed to different phosphorus concentrations, and miR-145 and miR-486 were overexpressed to investigate their role in VC. RESULTS: miR-145, miR-122-5p, miR-486 and miR-598-3p decreased in the rat calcified aortas, but only miR-145 and miR-486 were detected in serum. In human epigastric arteries, miR-145 and miR-486 were lower in kidney transplant recipients compared with donors. Both miRs inversely correlated with arterial calcium content and with VC (Kauppila index). In the general population, the severe VC was associated with the lowest serum levels of both miRs. The receiver operating characteristic curve showed that serum miR-145 was a good biomarker of VC. In VSMCs exposed to high phosphorus, calcium content, osteogenic markers (Runx2 and Osterix) increased, and the contractile marker (α-actin), miR-145 and miR-486 decreased. Overexpression of miR-145, and to a lesser extent miR-486, prevented the increase in calcium content induced by high phosphorus, the osteogenic differentiation and the loss of the contractile phenotype. CONCLUSION: miR-145 and miR-486 regulate the osteogenic differentiation of VSMCs, and their quantification in serum could serve as a marker of VC.


Assuntos
MicroRNAs , Calcificação Vascular , Animais , Humanos , Ratos , Biomarcadores , Cálcio , MicroRNAs/genética , Músculo Liso Vascular , Miócitos de Músculo Liso , Osteogênese/genética , Fósforo , Calcificação Vascular/genética
5.
Nephrol Dial Transplant ; 38(11): 2589-2597, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37349949

RESUMO

BACKGROUND: Diabetic patients on haemodialysis have a higher risk of mortality than non-diabetic patients. The aim of this COSMOS (Current management of secondary hyperparathyroidism: a multicentre observational study) analysis was to assess whether bone and mineral laboratory values [calcium, phosphorus and parathyroid hormone (PTH)] contribute to this risk. METHODS: COSMOS is a multicentre, open-cohort, 3-year prospective study, which includes 6797 patients from 227 randomly selected dialysis centres in 20 European countries. The association between mortality and calcium, phosphate or PTH was assessed using Cox proportional hazard regression models using both penalized splines smoothing and categorization according to KDIGO guidelines. The effect modification of the association between the relative risk of mortality and serum calcium, phosphate or PTH by diabetes was assessed. RESULTS: There was a statistically significant effect modification of the association between the relative risk of mortality and serum PTH by diabetes (P = .011). The slope of the curve of the association between increasing values of PTH and relative risk of mortality was steeper for diabetic compared with non-diabetic patients, mainly for high levels of PTH. In addition, high serum PTH (>9 times the normal values) was significantly associated with a higher relative risk of mortality in diabetic patients but not in non-diabetic patients [1.53 (95% confidence interval 1.07-2.19) and 1.17 (95% confidence interval 0.91-1.52)]. No significant effect modification of the association between the relative risk of mortality and serum calcium or phosphate by diabetes was found (P = .2 and P = .059, respectively). CONCLUSION: The results show a different association of PTH with the relative risk of mortality in diabetic and non-diabetic patients. These findings could have relevant implications for the diagnosis and treatment of chronic kidney disease-mineral and bone disorders.


Assuntos
Cálcio , Diabetes Mellitus , Humanos , Cálcio da Dieta , Diabetes Mellitus/etiologia , Minerais , Hormônio Paratireóideo , Fosfatos , Estudos Prospectivos , Diálise Renal/efeitos adversos
6.
Artigo em Inglês | MEDLINE | ID: mdl-37660283

RESUMO

BACKGROUND: Bone fragility fractures are associated with high morbidity and mortality. This study analysed the association between the current biochemical parameters of CKD-MBD and bone fragility fractures in the COSMOS project. METHODS: COSMOS is a 3-year, multicentre, open cohort, prospective, observational study carried out in 6797 hemodialysis patients (227 centres from 20 European countries). The association of bone fragility fractures (outcome) with serum calcium, phosphate and PTH (exposure), was assessed using Standard Cox proportional hazards regression and Cox proportional hazards regression for recurrent events. Additional analyses were performed considering all-cause mortality as a competitive event for bone fragility fracture occurrence. Multivariable models were used in all strategies, with the fully adjusted model including a total of 24 variables. RESULTS: During a median follow-up of 24 months 252 (4%) patients experienced at least one bone fragility fracture (incident bone fragility fracture rate 28.5 per 1000 patient-years). In the fractured and non-fractured patients, the percentage of men was 43.7% and 61.4%, mean age 68.1 and 63.8 years and a haemodialysis vintage of 55.9 and 38.3 months respectively. Baseline serum phosphate > 6.1 mg/dL (reference value 4.3-6.1 mg/dL) was significantly associated with a higher bone fragility fracture risk in both regression models (HR: 1.53[95%CI: 1.10-2.13] and HR: 1.44[95%CI: 1.02-2.05]. The significant association persisted after competitive risk analysis (subHR: 1.42[95%CI: 1.02-1.98]) but the finding was not confirmed when serum phosphate was considered as a continuous variable. Baseline serum calcium showed no association with bone fragility fracture risk in any regression model. Baseline serum PTH > 800 pg/mL was significantly associated with a higher bone fragility fracture risk in both regression models, but the association disappeared after a competitive risk analysis. CONCLUSIONS: Hyperphosphatemia was independently and consistently associated with an increased bone fracture risk, suggesting serum phosphate could be a novel risk factor for bone fractures in hemodialysis patients.

7.
Int J Mol Sci ; 24(12)2023 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-37373455

RESUMO

Preclinical biomedical models are a fundamental tool to improve the knowledge and management of diseases, particularly in diabetes mellitus (DM) since, currently, the pathophysiological and molecular mechanisms involved in its development are not fully clarified, and there is no treatment to cure DM. This review will focus on the features, advantages and limitations of some of the most used DM models in rats, such as the spontaneous models: Bio-Breeding Diabetes-Prone (BB-DP) and LEW.1AR1-iddm, as representative models of type 1 DM (DM-1); the Zucker diabetic fatty (ZDF) and Goto-kakizaki (GK) rats, as representative models of type 2 DM (DM-2); and other models induced by surgical, dietary and pharmacological-alloxan and streptozotocin-procedures. Given the variety of DM models in rats, as well as the non-uniformity in the protocols and the absence of all the manifestation of the long-term multifactorial complications of DM in humans, the researchers must choose the one that best suits the final objectives of the study. These circumstances, added to the fact that most of the experimental research in the literature is focused on the study of the early phase of DM, makes it necessary to develop long-term studies closer to DM in humans. In this review, a recently published rat DM model induced by streptozotocin injection with chronic exogenous administration of insulin to reduce hyperglycaemia has also been included in an attempt to mimic the chronic phase of DM in humans.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Humanos , Ratos , Animais , Modelos Animais de Doenças , Estreptozocina , Ratos Zucker , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 2/complicações
8.
Int J Mol Sci ; 24(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36982322

RESUMO

Fibrosis plays an important role in the pathogenesis of long-term diabetic complications and contributes to the development of cardiac and renal dysfunction. The aim of this experimental study, performed in a long-term rat model, which resembles type 1 diabetes mellitus, was to investigate the role of soluble Klotho (sKlotho), advanced glycation end products (AGEs)/receptor for AGEs (RAGE), fibrotic Wnt/ß-catenin pathway, and pro-fibrotic pathways in kidney and heart. Diabetes was induced by streptozotocin. Glycaemia was maintained by insulin administration for 24 weeks. Serum and urine sKlotho, AGEs, soluble RAGE (sRAGE) and biochemical markers were studied. The levels of Klotho, RAGEs, ADAM10, markers of fibrosis (collagen deposition, fibronectin, TGF-ß1, and Wnt/ß-catenin pathway), hypertrophy of the kidney and/or heart were analysed. At the end of study, diabetic rats showed higher levels of urinary sKlotho, AGEs and sRAGE and lower serum sKlotho compared with controls without differences in the renal Klotho expression. A significant positive correlation was found between urinary sKlotho and AGEs and urinary albumin/creatinine ratio (uACR). Fibrosis and RAGE levels were significantly higher in the heart without differences in the kidney of diabetic rats compared to controls. The results also suggest the increase in sKlotho and sRAGE excretion may be due to polyuria in the diabetic rats.


Assuntos
Diabetes Mellitus Experimental , Nefropatias , Ratos , Animais , beta Catenina , Receptor para Produtos Finais de Glicação Avançada , Fibrose , Produtos Finais de Glicação Avançada
9.
Calcif Tissue Int ; 108(4): 410-422, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33190187

RESUMO

The key players of the chronic kidney disease-mineral and bone disorders (CKD-MBD) are calcium, phosphate, PTH, FGF23, and the vitamin D hormonal system. The progressive reduction of kidney function greatly modifies the tightly interrelated mechanisms that control these parameters. As a result, important changes occur in the bone and mineral hormonal axis, leading to changes in bone turnover with relevant consequences in clinical outcomes, such as decrease in bone mass with increased bone fragility and bone fractures and increased vascular and valvular calcification, also with great impact in the cardiovascular outcomes. So far, the knowledge of the mineral and bone disorders in CKD and the increased variety of efficacious therapies should lead to a better prevention and management of CKD-MBD.


Assuntos
Distúrbio Mineral e Ósseo na Doença Renal Crônica , Insuficiência Renal Crônica , Densidade Óssea , Cálcio , Distúrbio Mineral e Ósseo na Doença Renal Crônica/terapia , Fator de Crescimento de Fibroblastos 23 , Humanos , Fosfatos , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/terapia , Vitamina D
10.
Nephrol Dial Transplant ; 36(4): 618-631, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33367746

RESUMO

BACKGROUND: In chronic kidney disease, serum phosphorus (P) elevations stimulate parathyroid hormone (PTH) production, causing severe alterations in the bone-vasculature axis. PTH is the main regulator of the receptor activator of nuclear factor κB (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) system, which is essential for bone maintenance and also plays an important role in vascular smooth muscle cell (VSMC) calcification. The discovery of a new RANKL receptor, leucine-rich repeat-containing G-protein-coupled receptor 4 (LGR4), which is important for osteoblast differentiation but with an unknown role in vascular calcification (VC), led us to examine the contribution of LGR4 in high P/high PTH-driven VC. METHODS: In vivo studies were conducted in subtotally nephrectomized rats fed a normal or high P diet, with and without parathyroidectomy (PTX). PTX rats were supplemented with PTH(1-34) to achieve physiological serum PTH levels. In vitro studies were performed in rat aortic VSMCs cultured in control medium, calcifying medium (CM) or CM plus 10-7 versus 10-9 M PTH. RESULTS: Rats fed a high P diet had a significantly increased aortic calcium (Ca) content. Similarly, Ca deposition was higher in VSMCs exposed to CM. Both conditions were associated with increased RANKL and LGR4 and decreased OPG aorta expression and were exacerbated by high PTH. Silencing of LGR4 or parathyroid hormone receptor 1 (PTH1R) attenuated the high PTH-driven increases in Ca deposition. Furthermore, PTH1R silencing and pharmacological inhibition of protein kinase A (PKA), but not protein kinase C, prevented the increases in RANKL and LGR4 and decreased OPG. Treatment with PKA agonist corroborated that LGR4 regulation is a PTH/PKA-driven process. CONCLUSIONS: High PTH increases LGR4 and RANKL and decreases OPG expression in the aorta, thereby favouring VC. The hormone's direct pro-calcifying actions involve PTH1R binding and PKA activation.


Assuntos
Miócitos de Músculo Liso/metabolismo , Osteoprotegerina/metabolismo , Hormônio Paratireóideo/farmacologia , Ligante RANK/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Calcificação Vascular/metabolismo , Animais , Hormônios e Agentes Reguladores de Cálcio/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Ligantes , Masculino , NF-kappa B/metabolismo , Osteoprotegerina/genética , Ligante RANK/genética , Ratos , Ratos Wistar , Receptor Ativador de Fator Nuclear kappa-B/genética , Receptores Acoplados a Proteínas G/genética
11.
Nephrol Dial Transplant ; 36(5): 793-803, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33416889

RESUMO

BACKGROUND: In chronic kidney disease, the activation of the renin-angiotensin-aldosterone system (RAAS) and renal inflammation stimulates renal fibrosis and the progression to end-stage renal disease. The low levels of vitamin D receptor (VDR) and its activators (VDRAs) contribute to worsen secondary hyperparathyroidism and renal fibrosis. METHODS: The 7/8 nephrectomy model of experimental chronic renal failure (CRF) was used to examine the anti-fibrotic effects of treatment with two VDRAs, paricalcitol and calcitriol, at equivalent doses (3/1 dose ratio) during 4 weeks. RESULTS: CRF increased the activation of the RAAS, renal inflammation and interstitial fibrosis. Paricalcitol treatment reduced renal collagen I and renal interstitial fibrosis by decreasing the activation of the RAAS through renal changes in renin, angiotensin receptor 1 (ATR1) and ATR2 mRNAs levels and renal inflammation by decreasing renal inflammatory leucocytes (CD45), a desintegrin and metaloproteinase mRNA, transforming growth factor beta mRNA and protein, and maintaining E-cadherin mRNA levels. Calcitriol showed similar trends without significant changes in most of these biomarkers. CONCLUSIONS: Paricalcitol effectively attenuated the renal interstitial fibrosis induced by CRF through a combination of inhibitory actions on the RAAS, inflammation and epithelial/mesenchymal transition.


Assuntos
Calcitriol , Animais , Biomarcadores/metabolismo , Calcitriol/farmacologia , Ergocalciferóis , Fibrose , Hiperparatireoidismo Secundário/tratamento farmacológico , Inflamação/metabolismo , Rim/metabolismo , Falência Renal Crônica/complicações , Receptores de Calcitriol/metabolismo , Insuficiência Renal Crônica/complicações , Renina/metabolismo , Sistema Renina-Angiotensina/efeitos dos fármacos
12.
Int J Mol Sci ; 22(1)2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-33401711

RESUMO

Fibrosis is a process characterized by an excessive accumulation of the extracellular matrix as a response to different types of tissue injuries, which leads to organ dysfunction. The process can be initiated by multiple and different stimuli and pathogenic factors which trigger the cascade of reparation converging in molecular signals responsible of initiating and driving fibrosis. Though fibrosis can play a defensive role, in several circumstances at a certain stage, it can progressively become an uncontrolled irreversible and self-maintained process, named pathological fibrosis. Several systems, molecules and responses involved in the pathogenesis of the pathological fibrosis of chronic kidney disease (CKD) will be discussed in this review, putting special attention on inflammation, renin-angiotensin system (RAS), parathyroid hormone (PTH), fibroblast growth factor 23 (FGF23), Klotho, microRNAs (miRs), and the vitamin D hormonal system. All of them are key factors of the core and regulatory pathways which drive fibrosis, having a great negative kidney and cardiac impact in CKD.


Assuntos
Diabetes Mellitus/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Fibrose/metabolismo , Glucuronidase/metabolismo , MicroRNAs/metabolismo , Hormônio Paratireóideo/metabolismo , Insuficiência Renal Crônica/metabolismo , Vitamina D/metabolismo , Progressão da Doença , Feminino , Fator de Crescimento de Fibroblastos 23 , Fibrose/patologia , Humanos , Inflamação/metabolismo , Proteínas Klotho , Masculino , MicroRNAs/genética , Fosfatos/metabolismo , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/patologia , Sistema Renina-Angiotensina
13.
Nephrol Dial Transplant ; 34(6): 934-941, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30189026

RESUMO

BACKGROUND: In chronic kidney disease (CKD), increases in serum phosphate and parathyroid hormone (PTH) aggravate vascular calcification (VC) and bone loss. This study was designed to discriminate high phosphorus (HP) and PTH contribution to VC and bone loss. METHODS: Nephrectomized rats fed a HP diet underwent either sham operation or parathyroidectomy and PTH 1-34 supplementation to normalize serum PTH. RESULTS: In uraemic rats fed a HP diet, parathyroidectomy with serum PTH 1-34 supplementation resulted in (i) reduced aortic calcium (80%) by attenuating osteogenic differentiation (higher α-actin; reduced Runx2 and BMP2) and increasing the Wnt inhibitor Sclerostin, despite a similar degree of hyperphosphataemia, renal damage and serum Klotho; (ii) prevention of bone loss mostly by attenuating bone resorption and increases in Wnt inhibitors; and (iii) a 70% decrease in serum calcitriol levels despite significantly reduced serum Fgf23, calcium and renal 24-hydroxylase, which questions that Fgf23 is the main regulator of renal calcitriol production. Significantly, when vascular smooth muscle cells (VSMCs) were exposed exclusively to high phosphate and calcium, high PTH enhanced while low PTH attenuated calcium deposition through parathyroid hormone 1 receptor (PTH1R) signalling. CONCLUSIONS: In hyperphosphataemic CKD, a defective suppression of high PTH exacerbates HP-mediated osteogenic VSMC differentiation and reduces vascular levels of anti-calcifying sclerostin.


Assuntos
Hormônio Paratireóideo/sangue , Fosfatos/sangue , Insuficiência Renal Crônica/sangue , Calcificação Vascular/metabolismo , Animais , Doenças Ósseas Metabólicas/sangue , Proteína Morfogenética Óssea 2/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Calcitriol/sangue , Cálcio/sangue , Cálcio/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/metabolismo , Marcadores Genéticos , Hiperfosfatemia/metabolismo , Rim/efeitos dos fármacos , Masculino , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Nefrectomia , Osteogênese/efeitos dos fármacos , Hormônio Paratireóideo/uso terapêutico , Paratireoidectomia , Fosforilação , Ratos , Ratos Wistar , Vitamina D3 24-Hidroxilase/metabolismo
14.
Eur J Clin Invest ; 48(12): e13027, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30229885

RESUMO

BACKGROUND: Bicuspid aortic valve (BAV) is a heterogeneous and still not fully understood condition, with diverse genetic aetiology and associated phenotypes ranging from aortic stenosis or regurgitation to aneurysm and dissection. Several genes have been associated with the presence of BAV, notably some members of the GATA family of transcription factors that play important roles in cardiac embryogenesis. METHODS: A case-control study with 122 unrelated and ethnically matched patients with bicuspid and 154 with tricuspid aortic valve was performed. All exons of GATA4, GATA5, and GATA6 genes were sequenced searching for variants. Frequencies were compared and functional effects of rare variants were analysed by informatic prediction tools. RESULTS: Four rare and potentially pathogenic variants were identified in only five sporadic cases: a missense p.Arg202Gln (rs782614097) in GATA5 and three synonymous variants, p.Cys274= (rs55980825) and p.His302= (rs201516339) in GATA4, and p.Asn458= (rs143026087) in GATA6. Minor alleles of p.His302=, p.Arg202Gln and rs3764962 are enriched in BAV patients compared to ExAC database (P = 0.01, 0.03, and 0.01 respectively). In addition, a common polymorphism in GATA5 (p.Asp203=, rs41305803) is associated with BAV showing a protective effect in carriers of the minor allele (OR [95%CI] = 0.45[0.25-0.81]; P = 0.004). CONCLUSION: This study associates additional genetic variants in GATA4 and GATA5 with BAV, supporting the implication of these genes in the development of this valvulopathy. The discovery of all the genetic factors involved will contribute to a better understanding of the process and, therefore, to detect a genetic predisposition and even to the identification of therapeutic targets.


Assuntos
Valva Aórtica/anormalidades , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA5/genética , Doenças das Valvas Cardíacas/genética , Idoso , Doença da Válvula Aórtica Bicúspide , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença/genética , Variação Genética/genética , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo Genético/genética
15.
Kidney Int ; 90(1): 77-89, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27165819

RESUMO

Bone loss and increased fractures are common complications in chronic kidney disease. Because Wnt pathway activation is essential for normal bone mineralization, we assessed whether Wnt inhibition contributes to high-phosphorus-induced mineralization defects in uremic rats. By week 20 after 7/8 nephrectomy, rats fed a high-phosphorus diet had the expected high serum creatinine, phosphorus, parathyroid hormone, and fibroblast growth factor 23 (FGF23) levels and low serum calcium. There was a 15% reduction in tibial mineral density and a doubling of bone cortical porosity compared to uremic rats fed a normal-phosphorus diet. The decreases in tibial mineral density were preceded by time-dependent increments in gene expression of bone formation (Osteocalcin and Runx2) and resorption (Cathepsin K) markers, which paralleled elevations in gene expression of the Wnt inhibitors Sfrp1 and Dkk1 in bone. Similar elevations of Wnt inhibitors plus an increased phospho-ß-catenin/ß-catenin ratio occurred upon exposure of the osteoblast cell line UMR106-01 either to uremic serum or to the combination of parathyroid hormone, FGF23, and soluble Klotho, at levels present in uremic serum. Strikingly, while osteoblast exposure to parathyroid hormone suppressed the expression of Wnt inhibitors, FGF23 directly inhibited the osteoblastic Wnt pathway through a soluble Klotho/MAPK-mediated process that required Dkk1 induction. Thus, the induction of Dkk1 by FGF23/soluble Klotho in osteoblasts inactivates Wnt/ß-catenin signaling. This provides a novel autocrine/paracrine mechanism for the adverse impact of high FGF23 levels on bone in chronic kidney disease.


Assuntos
Descalcificação Patológica/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Osteoblastos/metabolismo , Insuficiência Renal Crônica/complicações , Via de Sinalização Wnt , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Calcificação Fisiológica , Cálcio/sangue , Catepsina K/metabolismo , Linhagem Celular Tumoral , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Descalcificação Patológica/etiologia , Modelos Animais de Doenças , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/farmacologia , Glucuronidase/metabolismo , Glucuronidase/farmacologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas Klotho , Masculino , Proteínas de Membrana/metabolismo , Osteoblastos/efeitos dos fármacos , Osteocalcina/metabolismo , Hormônio Paratireóideo/sangue , Fósforo/sangue , Fósforo/metabolismo , Fósforo na Dieta/efeitos adversos , Porosidade , Ratos , Ratos Wistar , Insuficiência Renal Crônica/metabolismo , Tíbia/metabolismo , Tíbia/patologia , Uremia/complicações , Uremia/metabolismo , Proteínas Wnt/antagonistas & inibidores , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/sangue
16.
Nutrients ; 16(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38474734

RESUMO

Bone represents a metabolically active tissue subject to continuous remodeling orchestrated by the dynamic interplay between osteoblasts and osteoclasts. These cellular processes are modulated by a complex interplay of biochemical and mechanical factors, which are instrumental in assessing bone remodeling. This comprehensive evaluation aids in detecting disorders arising from imbalances between bone formation and reabsorption. Osteoporosis, characterized by a reduction in bone mass and strength leading to heightened bone fragility and susceptibility to fractures, is one of the more prevalent chronic diseases. Some epidemiological studies, especially in patients with chronic kidney disease (CKD), have identified an association between osteoporosis and vascular calcification. Notably, low bone mineral density has been linked to an increased incidence of aortic calcification, with shared molecules, mechanisms, and pathways between the two processes. Certain molecules emerging from these shared pathways can serve as biomarkers for bone and mineral metabolism. Detecting and evaluating these alterations early is crucial, requiring the identification of biomarkers that are reliable for early intervention. While traditional biomarkers for bone remodeling and vascular calcification exist, they suffer from limitations such as low specificity, low sensitivity, and conflicting results across studies. In response, efforts are underway to explore new, more specific biomarkers that can detect alterations at earlier stages. The aim of this review is to comprehensively examine some of the emerging biomarkers in mineral metabolism and their correlation with bone mineral density, fracture risk, and vascular calcification as well as their potential use in clinical practice.


Assuntos
Distúrbio Mineral e Ósseo na Doença Renal Crônica , Fraturas Ósseas , Osteoporose , Insuficiência Renal Crônica , Calcificação Vascular , Humanos , Distúrbio Mineral e Ósseo na Doença Renal Crônica/complicações , Osteoporose/etiologia , Densidade Óssea/fisiologia , Insuficiência Renal Crônica/complicações , Fraturas Ósseas/etiologia , Calcificação Vascular/complicações , Biomarcadores , Minerais
17.
Nutrients ; 15(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37447244

RESUMO

Phosphorus is a vital element for life found in most foods as a natural component, but it is also one of the most used preservatives added during food processing. High serum phosphorus contributes to develop vascular calcification in chronic kidney disease; however, it is not clear its effect in a population without kidney damage. The objective of this in vivo and in vitro study was to investigate the effect of high phosphorus exposure on the aortic and serum levels of miR-145 and its effect on vascular smooth muscle cell (VSMCs) changes towards less contractile phenotypes. The study was performed in aortas and serum from rats fed standard and high-phosphorus diets, and in VSMCs exposed to different concentrations of phosphorus. In addition, miR-145 silencing and overexpression experiments were carried out. In vivo results showed that in rats with normal renal function fed a high P diet, a significant increase in serum phosphorus was observed which was associated to a significant decrease in the aortic α-actin expression which paralleled the decrease in aortic and serum miR-145 levels, with no changes in the osteogenic markers. In vitro results using VSMCs corroborated the in vivo findings. High phosphorus first reduced miR-145, and afterwards α-actin expression. The miR-145 overexpression significantly increased α-actin expression and partially prevented the increase in calcium content. These results suggest that miR-145 could be an early biomarker of vascular calcification, which could give information about the initiation of the transdifferentiation process in VSMCs.


Assuntos
MicroRNAs , Calcificação Vascular , Ratos , Animais , Fósforo/metabolismo , Músculo Liso Vascular , Actinas/metabolismo , Transdiferenciação Celular , MicroRNAs/genética , MicroRNAs/metabolismo , Fenótipo , Calcificação Vascular/genética , Calcificação Vascular/metabolismo , Miócitos de Músculo Liso , Células Cultivadas
18.
Nutrients ; 15(8)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37111038

RESUMO

Drugs providing antihypertensive and protective cardiovascular actions are of clinical interest in controlling cardiovascular events and slowing the progression of kidney disease. We studied the effect of a hybrid compound, GGN1231 (derived from losartan in which a powerful antioxidant was attached), on the prevention of cardiovascular damage, cardiac hypertrophy, and fibrosis in a rat model of severe chronic renal failure (CRF). CRF by a 7/8 nephrectomy was carried out in male Wistar rats fed with a diet rich in phosphorous (0.9%) and normal calcium (0.6%) for a period of 12 weeks until sacrifice. In week 8, rats were randomized in five groups receiving different drugs including dihydrocaffeic acid as antioxidant (Aox), losartan (Los), dihydrocaffeic acid+losartan (Aox+Los) and GGN1231 as follows: Group 1 (CRF+vehicle group), Group 2 (CRF+Aox group), Group 3 (CRF+Los group), Group 4 (CRF+Aox+Los group), and Group 5 (CRF+GGN1231 group). Group 5, the CRF+GGN1231 group, displayed reduced proteinuria, aortic TNF-α, blood pressure, LV wall thickness, diameter of the cardiomyocytes, ATR1, cardiac TNF-α and fibrosis, cardiac collagen I, and TGF-ß1 expression. A non-significant 20% reduction in the mortality was also observed. This study showed the possible advantages of GGN1231, which could help in the management of cardiovascular and inflammatory processes. Further research is needed to confirm and even expand the positive aspects of this compound.


Assuntos
Falência Renal Crônica , Losartan , Ratos , Masculino , Animais , Losartan/farmacologia , Losartan/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Fator de Necrose Tumoral alfa/farmacologia , Ratos Wistar , Modelos Teóricos , Fibrose , Rim/metabolismo
19.
Nutrients ; 15(6)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36986200

RESUMO

This study was designed to investigate the controversy on the potential role of sKlotho as an early biomarker in Chronic Kidney Disease-Mineral Bone Disorder (CKD-MBD), to assess whether sKlotho is a reliable marker of kidney α-Klotho, to deepen the effects of sKlotho on vascular smooth muscle cells (VSMCs) osteogenic differentiation and to evaluate the role of autophagy in this process. Experimental studies were conducted in CKD mice fed a normal phosphorus (CKD+NP) or high phosphorus (CKD+HP) diet for 14 weeks. The patients' study was performed in CKD stages 2-5 and in vitro studies which used VSMCs exposed to non-calcifying medium or calcifying medium with or without sKlotho. The CKD experimental model showed that the CKD+HP group reached the highest serum PTH, P and FGF23 levels, but the lowest serum and urinary sKlotho levels. In addition, a positive correlation between serum sKlotho and kidney α-Klotho was found. CKD mice showed aortic osteogenic differentiation, together with increased autophagy. The human CKD study showed that the decline in serum sKlotho is previous to the rise in FGF23. In addition, both serum sKlotho and FGF23 levels correlated with kidney function. Finally, in VSMCs, the addition of sKlotho prevented osteogenic differentiation and induced autophagy. It can be concluded that serum sKlotho was the earliest CKD-MBD biomarker, a reliable indicator of kidney α-Klotho and that might protect against osteogenic differentiation by increasing autophagy. Nevertheless, further studies are needed to investigate the mechanisms of this possible protective effect.


Assuntos
Distúrbio Mineral e Ósseo na Doença Renal Crônica , Insuficiência Renal Crônica , Humanos , Camundongos , Animais , Proteínas Klotho , Glucuronidase , Osteogênese , Fatores de Crescimento de Fibroblastos , Rim , Fósforo , Minerais , Biomarcadores
20.
Biomolecules ; 13(9)2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37759819

RESUMO

Vascular calcification (VC) is a common complication in patients with chronic kidney disease which increases their mortality. Although oxidative stress is involved in the onset and progression of this disorder, the specific role of some of the main redox regulators, such as catalase, the main scavenger of H2O2, remains unclear. In the present study, epigastric arteries of kidney transplant recipients, a rat model of VC, and an in vitro model of VC exhibiting catalase (Cts) overexpression were analysed. Pericalcified areas of human epigastric arteries had increased levels of catalase and cytoplasmic, rather than nuclear runt-related transcription factor 2 (RUNX2). In the rat model, advanced aortic VC concurred with lower levels of the H2O2-scavenger glutathione peroxidase 3 compared to controls. In an early model of calcification using vascular smooth muscle cells (VSMCs), Cts VSMCs showed the expected increase in total levels of RUNX2. However, Cts VMSCs also exhibited a lower percentage of the nucleus stained for RUNX2 in response to calcifying media. In this early model of VC, we did not observe a dysregulation of the mitochondrial redox state; instead, an increase in the general redox state was observed in the cytoplasm. These results highlight the complex role of antioxidant enzymes as catalase by regulation of RUNX2 subcellular location delaying the onset of VC.


Assuntos
Insuficiência Renal Crônica , Calcificação Vascular , Humanos , Animais , Ratos , Catalase , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Peróxido de Hidrogênio , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA