Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 611(7934): 88-92, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36261527

RESUMO

Accurate knowledge of the mineralogy is essential for understanding the lower mantle, which represents more than half of Earth's volume. CaSiO3 perovskite is believed to be the third-most-abundant mineral throughout the lower mantle, following bridgmanite and ferropericlase1-3. Here we experimentally show that the calcium solubility in bridgmanite increases steeply at about 2,300 kelvin and above 40 gigapascals to a level sufficient for a complete dissolution of all CaSiO3 component in pyrolite into bridgmanite, resulting in the disappearance of CaSiO3 perovskite at depths greater than about 1,800 kilometres along the geotherm4,5. Hence we propose a change from a two-perovskite domain (TPD; bridgmanite plus CaSiO3 perovskite) at the shallower lower mantle to a single-perovskite domain (SPD; calcium-rich bridgmanite) at the deeper lower mantle. Iron seems to have a key role in increasing the calcium solubility in bridgmanite. The temperature-driven nature can cause large lateral variations in the depth of the TPD-to-SPD change in response to temperature variations (by more than 500 kilometres). Furthermore, the SPD should have been thicker in the past when the mantle was warmer. Our finding requires revision of the deep-mantle mineralogy models and will have an impact on our understanding of the composition, structure, dynamics and evolution of the region.

2.
J Am Chem Soc ; 145(42): 23014-23026, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37824502

RESUMO

Nitroxyl, HNO/NO-, the one-electron reduced form of NO, is suggested to take part in distinct signaling pathways in mammals and is also a key intermediate in various heme-catalyzed NOx interconversions in the nitrogen cycle. Cytochrome P450nor (Cyt P450nor) is a heme-containing enzyme that performs NO reduction to N2O in fungal denitrification. The reactive intermediate in this enzyme, termed "Intermediate I", is proposed to be an Fe-NHO/Fe-NHOH type species, but it is difficult to study its electronic structure and exact protonation state due to its instability. Here, we utilize a bulky bis-picket fence porphyrin to obtain the first stable heme-HNO model complex, [Fe(3,5-Me-BAFP)(MI)(NHO)], as a model for Intermediate I, and more generally HNO adducts of heme proteins. Due to the steric hindrance of the bis-picket fence porphyrin, [Fe(3,5-Me-BAFP)(MI)(NHO)] is stable (τ1/2 = 56 min at -30 °C), can be isolated as a solid, and is available for thorough spectroscopic characterization. In particular, we were able to solve a conundrum in the literature and provide the first full vibrational characterization of a heme-HNO complex using IR and nuclear resonance vibrational spectroscopy (NRVS). Reactivity studies of [Fe(3,5-Me-BAFP)(MI)(NHO)] with NO gas show a 91 ± 10% yield for N2O formation, demonstrating that heme-HNO complexes are catalytically competent intermediates for NO reduction to N2O in Cyt P450nor. The implications of these results for the mechanism of Cyt P450nor are further discussed.


Assuntos
Hemeproteínas , Porfirinas , Animais , Heme/química , Porfirinas/química , Análise Espectral , Mamíferos/metabolismo
3.
J Am Chem Soc ; 144(36): 16395-16409, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36040133

RESUMO

Flavodiiron nitric oxide reductases (FNORs), found in pathogenic bacteria, are capable of reducing nitric oxide (NO) to nitrous oxide (N2O) to detoxify NO released by the human immune system. Previously, we reported the first FNOR model system that mediates direct NO reduction (Dong, H. T.; J. Am. Chem. Soc. 2018, 140, 13429-13440), but no intermediate of the reaction could be characterized. Here, we present a new set of model complexes that, depending on the ligand substitution, can either mediate direct NO reduction or stabilize a highly activated high-spin (hs) {FeNO}7 complex, the first intermediate of the reaction. The precursors, [{FeII(MPA-(RPhO)2)}2] (1, R = H and 2, R = tBu, Me), were prepared first and fully characterized. Complex 1 (without steric protection) directly reduces NO to N2O almost quantitatively, which constitutes only the second example of this reaction in model systems. Contrarily, the reaction of sterically protected 2 with NO forms the stable mononitrosyl complex 3, which shows one of the lowest N-O stretching frequencies (1689 cm-1) observed so far for a mononuclear hs-{FeNO}7 complex. This study confirms that an N-O stretch ≤1700 cm-1 represents the appropriate level of activation of the FeNO unit to enable direct NO reduction. The higher activation level of these hs-{FeNO}7 complexes required for NO reduction compared to those formed in FNORs emphasizes the importance of hydrogen bonding residues in the active sites of FNORs to activate the bound NO ligands for direct N-N coupling and N2O formation. The implications of these results for FNORs are further discussed.


Assuntos
Óxido Nítrico , Óxido Nitroso , Domínio Catalítico , Humanos , Ligantes , Óxido Nítrico/química
4.
J Am Chem Soc ; 144(9): 3804-3820, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35212523

RESUMO

Flavodiiron nitric oxide reductases (FNORs) carry out the reduction of nitric oxide (NO) to nitrous oxide (N2O), allowing infectious pathogens to mitigate toxic levels of NO generated in the human immune response. We previously reported the model complex [Fe2(BPMP)(OPr)(NO)2](OTf)2 (1, OPr- = propionate) that contains two coplanar NO ligands and that is capable of quantitative NO reduction to N2O [White et al. J. Am. Chem. Soc. 2018, 140, 2562-2574]. Here we investigate, for the first time, how a distortion of the active site affects the ability of the diiron core to mediate N2O formation. For this purpose, we prepared several analogues of 1 that contain two monodentate ligands in place of the bridging carboxylate, [Fe2(BPMP)(X)2(NO)2]3+/1+ (2-X; X = triflate, 1-methylimidazole, or methanol). Structural data of 2-X show that without the bridging carboxylate, the diiron core expands, leading to elongated (O)N-N(O) distances (from 2.80 Å in 1 to 3.00-3.96 Å in 2-X) and distorted (O)N-Fe-Fe-N(O) dihedral angles (from coplanarity (5.9°) in 1 to 52.9-85.1° in 2-X). Whereas 1 produces quantitative amounts of N2O upon one-electron reduction, N2O production is substantially impeded in 2-X, to an initial 5-10% N2O yield. The main products after reduction are unprecedented hs-FeII/{Fe(NO)2}9/10 dinitrosyl iron complexes (DNICs). Even though mononuclear DNICs are stable and do not show N-N coupling (since it is a spin-forbidden process), the hs-FeII/{Fe(NO)2}9/10 DNICs obtained from 2-X show unexpected reactivity and produce up to quantitative N2O yields after 2 h. The implications of these results for the active site structure of FNORs are discussed.


Assuntos
Óxido Nítrico , Oxirredutases , Catálise , Compostos Ferrosos , Humanos , Ferro/química , Ligantes , Óxido Nítrico/química , Óxido Nitroso , Oxirredutases/química
5.
J Synchrotron Radiat ; 29(Pt 3): 677-686, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35511001

RESUMO

Nuclear resonance time domain interferometry (NR-TDI) is used to study the slow dynamics of liquids (that do not require Mössbauer isotopes) at atomic and molecular length scales. Here the TDI method of using a stationary two-line magnetized 57Fe foil as a source and a stationary single-line stainless steel foil analyzer is employed. The new technique of adding an annular slit in front of a single silicon avalanche photodiode detector enables a wide range of momentum transfers (1 to 100 nm-1 by varying the distance between the annular slits and sample) with a high count rate of up to 160 Hz with a Δq resolution of ±1.7 nm-1 at q = 14 nm-1. The sensitivity of this method in determining relaxation times is quantified and discussed. The Kohlrausch-Williams-Watts (KWW) model was used to extract relaxation times for glycerol. These relaxation times give insight into the dynamics of the electron density fluctuations of glycerol as a function of temperature and momentum transfers.

6.
Proc Natl Acad Sci U S A ; 115(18): 4565-4570, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29610304

RESUMO

Iron-containing zeolites exhibit unprecedented reactivity in the low-temperature hydroxylation of methane to form methanol. Reactivity occurs at a mononuclear ferrous active site, α-Fe(II), that is activated by N2O to form the reactive intermediate α-O. This has been defined as an Fe(IV)=O species. Using nuclear resonance vibrational spectroscopy coupled to X-ray absorption spectroscopy, we probe the bonding interaction between the iron center, its zeolite lattice-derived ligands, and the reactive oxygen. α-O is found to contain an unusually strong Fe(IV)=O bond resulting from a constrained coordination geometry enforced by the zeolite lattice. Density functional theory calculations clarify how the experimentally determined geometric structure of the active site leads to an electronic structure that is highly activated to perform H-atom abstraction.


Assuntos
Ferro/química , Zeolitas/química , Zeolitas/metabolismo , Catálise , Domínio Catalítico , Hidroxilação/fisiologia , Ferro/metabolismo , Metano/química , Metano/metabolismo , Metanol/química , Modelos Moleculares , Estrutura Molecular , Oxigênio/química , Espectrofotometria/métodos
7.
Proc Natl Acad Sci U S A ; 115(48): 12124-12129, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30429333

RESUMO

A direct, catalytic conversion of benzene to phenol would have wide-reaching economic impacts. Fe zeolites exhibit a remarkable combination of high activity and selectivity in this conversion, leading to their past implementation at the pilot plant level. There were, however, issues related to catalyst deactivation for this process. Mechanistic insight could resolve these issues, and also provide a blueprint for achieving high performance in selective oxidation catalysis. Recently, we demonstrated that the active site of selective hydrocarbon oxidation in Fe zeolites, named α-O, is an unusually reactive Fe(IV)=O species. Here, we apply advanced spectroscopic techniques to determine that the reaction of this Fe(IV)=O intermediate with benzene in fact regenerates the reduced Fe(II) active site, enabling catalytic turnover. At the same time, a small fraction of Fe(III)-phenolate poisoned active sites form, defining a mechanism for catalyst deactivation. Density-functional theory calculations provide further insight into the experimentally defined mechanism. The extreme reactivity of α-O significantly tunes down (eliminates) the rate-limiting barrier for aromatic hydroxylation, leading to a diffusion-limited reaction coordinate. This favors hydroxylation of the rapidly diffusing benzene substrate over the slowly diffusing (but more reactive) oxygenated product, thereby enhancing selectivity. This defines a mechanism to simultaneously attain high activity (conversion) and selectivity, enabling the efficient oxidative upgrading of inert hydrocarbon substrates.


Assuntos
Benzeno/química , Ferro/química , Zeolitas/química , Catálise , Domínio Catalítico , Hidroxilação , Cinética , Modelos Moleculares , Estrutura Molecular , Oxirredução , Oxigênio/química , Fenol/química
8.
Phys Rev Lett ; 125(7): 077202, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32857531

RESUMO

We report a pressure-induced phase transition in the frustrated kagomé material jarosite at ∼45 GPa, which leads to the disappearance of magnetic order. Using a suite of experimental techniques, we characterize the structural, electronic, and magnetic changes in jarosite through this phase transition. Synchrotron powder x-ray diffraction and Fourier transform infrared spectroscopy experiments, analyzed in aggregate with the results from density functional theory calculations, indicate that the material changes from a R3[over ¯]m structure to a structure with a R3[over ¯]c space group. The resulting phase features a rare twisted kagomé lattice in which the integrity of the equilateral Fe^{3+} triangles persists. Based on symmetry arguments we hypothesize that the resulting structural changes alter the magnetic interactions to favor a possible quantum paramagnetic phase at high pressure.

9.
Inorg Chem ; 59(20): 14967-14982, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-32989992

RESUMO

We previously reported the synthesis and preliminary characterization of a unique series of low-spin (ls) {FeNO}8-10 complexes supported by an ambiphilic trisphosphineborane ligand, [Fe(TPB)(NO)]+/0/-. Herein, we use advanced spectroscopic techniques and density functional theory (DFT) calculations to extract detailed information as to how the bonding changes across the redox series. We find that, in spite of the highly reduced nature of these complexes, they feature an NO+ ligand throughout with strong Fe-NO π-backbonding and essentially closed-shell electronic structures of their FeNO units. This is enabled by an Fe-B interaction that is present throughout the series. In particular, the most reduced [Fe(TPB)(NO)]- complex, an example of a ls-{FeNO}10 species, features a true reverse dative Fe → B bond where the Fe center acts as a strong Lewis-base. Hence, this complex is in fact electronically similar to the ls-{FeNO}8 system, with two additional electrons "stored" on site in an Fe-B single bond. The outlier in this series is the ls-{FeNO}9 complex, due to spin polarization (quantified by pulse EPR spectroscopy), which weakens the Fe-NO bond. These data are further contextualized by comparison with a related N2 complex, [Fe(TPB)(N2)]-, which is a key intermediate in Fe(TPB)-catalyzed N2 fixation. Our present study finds that the Fe → B interaction is key for storing the electrons needed to achieve a highly reduced state in these systems, and highlights the pitfalls associated with using geometric parameters to try to evaluate reverse dative interactions, a finding with broader implications to the study of transition metal complexes with boratrane and related ligands.

10.
Proc Natl Acad Sci U S A ; 114(25): 6468-6473, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28584106

RESUMO

Our current understanding of the electronic state of iron in lower-mantle minerals leads to a considerable disagreement in bulk sound speed with seismic measurements if the lower mantle has the same composition as the upper mantle (pyrolite). In the modeling studies, the content and oxidation state of Fe in the minerals have been assumed to be constant throughout the lower mantle. Here, we report high-pressure experimental results in which Fe becomes dominantly Fe2+ in bridgmanite synthesized at 40-70 GPa and 2,000 K, while it is in mixed oxidation state (Fe3+/∑Fe = 60%) in the samples synthesized below and above the pressure range. Little Fe3+ in bridgmanite combined with the strong partitioning of Fe2+ into ferropericlase will alter the Fe content for these minerals at 1,100- to 1,700-km depths. Our calculations show that the change in iron content harmonizes the bulk sound speed of pyrolite with the seismic values in this region. Our experiments support no significant changes in bulk composition for most of the mantle, but possible changes in physical properties and processes (such as viscosity and mantle flow patterns) in the midmantle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA