Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(13)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37445810

RESUMO

Intracellular pH (pHi) regulation is a challenge for the exocrine pancreas, where the luminal secretion of bicarbonate-rich fluid is accompanied by interstitial flows of acid. This acid-base transport requires a plethora of ion transporters, including bicarbonate transporters and the Na+/H+ exchanger isoform 1 (NHE1), which are dysregulated in Pancreatic Ductal Adenocarcinoma (PDAC). PDAC progression is favored by a Collagen-I rich extracellular matrix (ECM) which exacerbates the physiological interstitial acidosis. In organotypic cultures of normal human pancreatic cells (HPDE), parenchymal cancer cells (CPCs) and cancer stem cells (CSCs) growing on matrices reproducing ECM changes during progression, we studied resting pHi, the pHi response to fluxes of NaHCO3 and acidosis and the role of NHE1 in pHi regulation. Our findings show that: (i) on the physiological ECM, HPDE cells have the most alkaline pHi, followed by CSCs and CPCs, while a Collagen I-rich ECM reverses the acid-base balance in cancer cells compared to normal cells; (ii) both resting pHi and pHi recovery from an acid load are reduced by extracellular NaHCO3, especially in HPDE cells on a normal ECM; (iii) cancer cell NHE1 activity is less affected by NaHCO3. We conclude that ECM composition and the fluctuations of pHe cooperate to predispose pHi homeostasis towards the presence of NaHCO3 gradients similar to that expected in the tumor.


Assuntos
Acidose , Neoplasias , Humanos , Concentração de Íons de Hidrogênio , Bicarbonatos/metabolismo , Matriz Extracelular/metabolismo , Colágeno Tipo I , Ductos Pancreáticos/metabolismo , Células Epiteliais/metabolismo , Trocadores de Sódio-Hidrogênio
2.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35806308

RESUMO

Ion channels are pore-forming proteins that allow ions to flow across plasma membranes and intracellular organelles in both excitable and non-excitable cells. They are involved in the regulation of several biological processes (i.e., proliferation, cell volume and shape, differentiation, migration, and apoptosis). Recently, the aberrant expression of ion channels has emerged as an important step of malignant transformation, tumor progression, and drug resistance, leading to the idea of "onco-channelopathy". Here, we review the contribution of ion channels and transporters in multiple myeloma (MM), a hematological neoplasia characterized by the expansion of tumor plasma cells (MM cells) in the bone marrow (BM). Deregulation of ion channels sustains MM progression by modulating intracellular pathways that promote MM cells' survival, proliferation, and drug resistance. Finally, we focus on the promising role of ion channels as therapeutic targets for the treatment of MM patients in a combination strategy with currently used anti-MM drugs to improve their cytotoxic activity and reduce adverse effects.


Assuntos
Antineoplásicos , Mieloma Múltiplo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Humanos , Canais Iônicos/metabolismo , Íons/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo
3.
Muscle Nerve ; 64(1): 95-99, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33835497

RESUMO

INTRODUCTION/AIMS: Paramyotonia congenita (PMC) is a skeletal muscle sodium channelopathy characterized by paradoxical myotonia, cold sensitivity, and exercise/cold-induced paralysis. Treatment with sodium-channel-blocking antiarrhythmic agents may expose patients to a risk of arrhythmia or may be poorly tolerated or ineffective. In this study we explored the effectiveness of non-antiarrhythmic sodium-channel blockers in two patients with PMC. METHODS: Earlier treatment with mexiletine was discontinued for gastrointestinal side effects in one of the patients and lack of clinical benefit in the other. One patient received lacosamide, ranolazine, and buprenorphine, and the other was given buprenorphine only. Drug efficacy was assessed by clinical scores, timed tests, and by long and short exercise tests. RESULTS: In both patients, buprenorphine improved pain scores by at least 50%, stiffness and weakness levels, and handgrip/eyelid-opening times. The fall in compound muscle action potential (CMAP) during short exercise normalized in both patients at baseline, and improved after cooling. During long exercise, one patient showed an earlier recovery of CMAP, and the other patient had a less severe decrease (<60%). With buprenorphine, the fall in CMAP induced by cooling normalized in one patient (from -72% to -4%) and improved (from -49% to -37%) in the other patient. DISCUSSION: Buprenorphine showed promising results for the treatment of exercise-induced paralysis and cold intolerance in the two patients assessed. The exercise test may be useful for quantitative assessment of treatment response. Further studies on a larger number of patients, under carefully controlled conditions, should be considered to address the effectiveness and long-term tolerability of this therapeutic option.


Assuntos
Analgésicos Opioides/uso terapêutico , Buprenorfina/uso terapêutico , Transtornos Miotônicos/diagnóstico , Transtornos Miotônicos/tratamento farmacológico , Analgésicos Opioides/farmacologia , Buprenorfina/farmacologia , Teste de Esforço/efeitos dos fármacos , Teste de Esforço/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos Miotônicos/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Resultado do Tratamento
4.
Pflugers Arch ; 472(7): 961-975, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32361781

RESUMO

In 1970, the study of the pathomechanisms underlying myotonia in muscle fibers isolated from myotonic goats highlighted the importance of chloride conductance for skeletal muscle function; 20 years later, the human ClC-1 chloride channel has been cloned; last year, the crystal structure of human protein has been solved. Over the years, the efforts of many researchers led to significant advances in acknowledging the role of ClC-1 in skeletal muscle physiology and the mechanisms through which ClC-1 dysfunctions lead to impaired muscle function. The wide spectrum of pathophysiological conditions associated with modification of ClC-1 activity, either as the primary cause, such as in myotonia congenita, or as a secondary adaptive mechanism in other neuromuscular diseases, supports the idea that ClC-1 is relevant to preserve not only for skeletal muscle excitability, but also for skeletal muscle adaptation to physiological or harmful events. Improving this understanding could open promising avenues toward the development of selective and safe drugs targeting ClC-1, with the aim to restore normal muscle function. This review summarizes the most relevant research on ClC-1 channel physiology, associated diseases, and pharmacology.


Assuntos
Canais de Cloreto/metabolismo , Cloretos/metabolismo , Músculo Esquelético/metabolismo , Animais , Humanos , Miotonia Congênita/metabolismo
5.
Pharmacol Res ; 141: 224-235, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30611854

RESUMO

Sodium channel myotonia and paramyotonia congenita are caused by gain-of-function mutations in the skeletal muscle voltage-gated sodium channel hNav1.4. The first-line drug is the sodium channel blocker mexiletine; however, some patients show side effects or limited responses. We previously showed that two hNav1.4 mutations, p.G1306E and p.P1158L, reduce mexiletine potency in vitro, whereas another sodium channel blocker, flecainide, is less sensitive to mutation-induced gating defects. This observation was successfully translated to p.G1306E and p.P1158L carriers. Thus, the aim of this study was to perform a pharmacological characterization of myotonic Nav1.4 mutations clustered near the fast inactivation gate of the channel. We chose seven mutations (p.V1293I, p.N1297S, p.N1297K, p.F1298C, p.G1306E, p.I1310N, and p.T1313M) from the database of Italian and French networks for muscle channelopathies. Recombinant hNav1.4 mutants were expressed in HEK293T cells for functional and pharmacological characterization using the patch-clamp technique. All the studied mutations impair the kinetics and/or voltage dependence of fast inactivation, which is likely the main mechanism responsible for myotonia. The severity of myotonia is well-correlated to the enhancement of window currents generated by the intersection of the activation and fast inactivation voltage dependence. Five of the six mutants displaying a significant positive shift of fast inactivation voltage dependence reduced mexiletine inhibition in an experimental condition mimicking myotonia. In contrast, none of the mutations impairs flecainide block nor does p.T1313M impair propafenone block, indicating that class Ic antiarrhythmics may constitute a valuable alternative. Our study suggests that mutation-driven therapy would be beneficial to myotonic patients, greatly improving their quality of life.


Assuntos
Transtornos Miotônicos/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Células HEK293 , Humanos , Recém-Nascido , Ativação do Canal Iônico , Masculino , Pessoa de Meia-Idade , Mutação , Transtornos Miotônicos/tratamento farmacológico , Adulto Jovem
6.
Hum Mutat ; 39(9): 1273-1283, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29935101

RESUMO

Myotonia congenita (MC) is a skeletal-muscle hyperexcitability disorder caused by loss-of-function mutations in the ClC-1 chloride channel. Mutations are scattered over the entire sequence of the channel protein, with more than 30 mutations located in the poorly characterized cytosolic C-terminal domain. In this study, we characterized, through patch clamp, seven ClC-1 mutations identified in patients affected by MC of various severities and located in the C-terminal region. The p.Val829Met, p.Thr832Ile, p.Val851Met, p.Gly859Val, and p.Leu861Pro mutations reside in the CBS2 domain, while p.Pro883Thr and p.Val947Glu are in the C-terminal peptide. We showed that the functional properties of mutant channels correlated with the clinical phenotypes of affected individuals. In addition, we defined clusters of ClC-1 mutations within CBS2 and C-terminal peptide subdomains that share the same functional defect: mutations between 829 and 835 residues and in residue 883 induced an alteration of voltage dependence, mutations between 851 and 859 residues, and in residue 947 induced a reduction of chloride currents, whereas mutations on 861 residue showed no obvious change in ClC-1 function. This study improves our understanding of the mechanisms underlying MC, sheds light on the role of the C-terminal region in ClC-1 function, and provides information to develop new antimyotonic drugs.


Assuntos
Canais de Cloreto/genética , Análise Mutacional de DNA , Mutação/genética , Miotonia Congênita/genética , Adolescente , Adulto , Aminoácidos/genética , Feminino , Humanos , Ativação do Canal Iônico/genética , Masculino , Pessoa de Meia-Idade , Miotonia Congênita/tratamento farmacológico , Miotonia Congênita/fisiopatologia , Técnicas de Patch-Clamp , Peptídeos/genética , Domínios Proteicos/genética
7.
Handb Exp Pharmacol ; 246: 233-250, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28939972

RESUMO

Benzothiazole is a versatile fused heterocycle that aroused much interest in drug discovery as anticonvulsant, neuroprotective, analgesic, anti-inflammatory, antimicrobial, and anticancer. Two benzothiazolamines, riluzole and lubeluzole, are known blockers of voltage-gated sodium (Nav) channels. Riluzole is clinically used as a neuroprotectant in amyotrophic lateral sclerosis. Inhibition of Nav channels by riluzole is voltage-dependent due to preferential binding to inactivated sodium channels. Yet the drug exerts little use-dependent block, probably because it lacks protonable amine. One important property is riluzole ability to inhibit persistent Na+ currents, which likely contributes to its neuroprotective activity. Lubeluzole showed promising neuroprotective effects in animal stroke models, but failed to show benefits in acute ischemic stroke in humans. One important concern is its propensity to prolong the cardiac QT interval, due to hERG K+ channel block. Lubeluzole very potently inhibits Nav channels in a voltage- and use-dependent manner, due to its great preferential affinity for inactivated channels and the presence of a protonable amine group. Patch-clamp experiments suggest that the binding sites of both drugs overlap the local anesthetic receptor within the ion-conducting pathway. Riluzole and lubeluzole displayed very potent antimyotonic activity in a rat model of myotonia, a pathological skeletal muscle condition characterized by high-frequency runs of action potentials. Such results well support the repurposing of riluzole as an antimyotonic drug, allowing the launch of a pilot study in myotonic patients. Riluzole, lubeluzole, and new Nav channel blockers built on the benzothiazolamine scaffold will certainly continue to be investigated for possible clinical applications.


Assuntos
Piperidinas/farmacologia , Riluzol/farmacologia , Tiazóis/farmacologia , Canais de Sódio Disparados por Voltagem/efeitos dos fármacos , Animais , Humanos , Miotonia/tratamento farmacológico , Piperidinas/uso terapêutico , Riluzol/uso terapêutico , Tiazóis/uso terapêutico
8.
Mol Cell Neurosci ; 83: 6-12, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28666963

RESUMO

Episodic ataxia type 1 (EA1) is a human dominant neurological syndrome characterized by continuous myokymia, episodic attacks of ataxic gait and spastic contractions of skeletal muscles that can be triggered by emotional stress and fatigue. This rare disease is caused by missense mutations in the KCNA1 gene coding for the neuronal voltage gated potassium channel Kv1.1, which contributes to nerve cell excitability in the cerebellum, hippocampus, cortex and peripheral nervous system. We identified a novel KCNA1 mutation, E283K, in an Italian proband presenting with paroxysmal ataxia and myokymia aggravated by painful contractures and metabolic dysfunctions. The E283K mutation is located in the S3-S4 extracellular linker belonging to the voltage sensor domain of Kv channels. In order to test whether the E283K mutation affects Kv1.1 biophysical properties we transfected HEK293 cells with WT or mutant cDNAs alone or in a 1:1 combination, and recorded relative potassium currents in the whole-cell configuration of patch-clamp. Mutant E283K channels display voltage-dependent activation shifted by 10mV toward positive potentials and kinetics of activation slowed by ~2 fold compared to WT channels. Potassium currents resulting from heteromeric WT/E283K channels show voltage-dependent gating and kinetics of activation intermediate between WT and mutant homomeric channels. Based on homology modeling studies of the mutant E283K, we propose a molecular explanation for the reduced voltage sensitivity and slow channel opening. Overall, our results suggest that the replacement of a negatively charged residue with a positively charged lysine at position 283 in Kv1.1 causes a drop of potassium current that likely accounts for EA-1 symptoms in the heterozygous carrier.


Assuntos
Ataxia/genética , Canal de Potássio Kv1.1/metabolismo , Mutação de Sentido Incorreto , Mioquimia/genética , Ataxia/metabolismo , Ataxia/patologia , Feminino , Células HEK293 , Humanos , Ativação do Canal Iônico , Canal de Potássio Kv1.1/química , Canal de Potássio Kv1.1/genética , Pessoa de Meia-Idade , Mioquimia/metabolismo , Mioquimia/patologia , Linhagem
9.
Neurogenetics ; 18(4): 219-225, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28993909

RESUMO

Non-dystrophic myotonias are characterized by clinical overlap making it challenging to establish genotype-phenotype correlations. We report clinical and electrophysiological findings in a girl and her father concomitantly harbouring single heterozygous mutations in SCN4A and CLCN1 genes. Functional characterization of N1297S hNav1.4 mutant was performed by patch clamp. The patients displayed a mild phenotype, mostly resembling a sodium channel myotonia. The CLCN1 c.501C>G (p.F167L) mutation has been already described in recessive pedigrees, whereas the SCN4A c.3890A>G (p.N1297S) variation is novel. Patch clamp experiments showed impairment of fast and slow inactivation of the mutated Nav1.4 sodium channel. The present findings suggest that analysis of both SCN4A and CLCN1 genes should be considered in myotonic patients with atypical clinical and neurophysiological features.


Assuntos
Canais de Cloreto/genética , Mutação/genética , Miotonia/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Adulto , Feminino , Estudos de Associação Genética/métodos , Heterozigoto , Humanos , Miotonia/diagnóstico , Linhagem , Fenótipo
10.
FASEB J ; 30(10): 3285-3295, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27324117

RESUMO

Myotonia congenita is an inherited disease that is characterized by impaired muscle relaxation after contraction caused by loss-of-function mutations in the skeletal muscle ClC-1 channel. We report a novel ClC-1 mutation, T335N, that is associated with a mild phenotype in 1 patient, located in the extracellular I-J loop. The purpose of this study was to provide a solid correlation between T335N dysfunction and clinical symptoms in the affected patient as well as to offer hints for drug development. Our multidisciplinary approach includes patch-clamp electrophysiology on T335N and ClC-1 wild-type channels expressed in tsA201 cells, Western blot and quantitative PCR analyses on muscle biopsies from patient and unaffected individuals, and molecular dynamics simulations using a homology model of the ClC-1 dimer. T335N channels display reduced chloride currents as a result of gating alterations rather than altered surface expression. Molecular dynamics simulations suggest that the I-J loop might be involved in conformational changes that occur at the dimer interface, thus affecting gating. Finally, the gene expression profile of T335N carrier showed a diverse expression of K+ channel genes, compared with control individuals, as potentially contributing to the phenotype. This experimental paradigm satisfactorily explained myotonia in the patient. Furthermore, it could be relevant to the study and therapy of any channelopathy.-Imbrici, P., Altamura, C., Camerino, G. M., Mangiatordi, G. F., Conte, E., Maggi, L., Brugnoni, R., Musaraj, K., Caloiero, R., Alberga, D., Marsano, R. M., Ricci, G., Siciliano, G., Nicolotti, O., Mora, M., Bernasconi, P., Desaphy, J.-F., Mantegazza, R., Camerino, D. C. Multidisciplinary study of a new ClC-1 mutation causing myotonia congenita: a paradigm to understand and treat ion channelopathies.


Assuntos
Canalopatias/metabolismo , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Fenômenos Eletrofisiológicos/genética , Mutação/genética , Miotonia Congênita/metabolismo , Humanos , Ativação do Canal Iônico/genética , Ativação do Canal Iônico/fisiologia , Músculo Esquelético/metabolismo , Técnicas de Patch-Clamp/métodos , Fenótipo
11.
J Neuromuscul Dis ; 11(3): 725-734, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427496

RESUMO

Background: The nondystrophic myotonias are rare muscle hyperexcitability disorders caused by gain-of-function mutations in the SCN4A gene or loss-of-function mutations in the CLCN1 gene. Clinically, they are characterized by myotonia, defined as delayed muscle relaxation after voluntary contraction, which leads to symptoms of muscle stiffness, pain, fatigue, and weakness. Diagnosis is based on history and examination findings, the presence of electrical myotonia on electromyography, and genetic confirmation. Methods: Next-generation sequencing including the CLCN1 and SCN4A genes was performed in patients with clinical neuromuscular disorders. Electromyography, Short Exercise Test, in vivo and in vitro electrophysiology, site-directed mutagenesis and heterologous expression were collected. Results: A heterozygous point mutation (c.1775C > T, p.Thr592Ile) of muscle voltage-gated sodium channel α subunit gene (SCN4A) has been identified in five female patients over three generations, in a family with non-dystrophic myotonia. The muscle stiffness and myotonia involve mainly the face and hands, but also affect walking and running, appearing early after birth and presenting a clear cold sensitivity. Very hot temperatures, menstruation and pregnancy also exacerbate the symptoms; muscle pain and a warm-up phenomenon are variable features. Neither paralytic attacks nor post-exercise weakness has been reported. Muscle hypertrophy with cramp-like pain and increased stiffness developed during pregnancy. The symptoms were controlled with both mexiletine and acetazolamide. The Short Exercise Test after muscle cooling revealed two different patterns, with moderate absolute changes of compound muscle action potential amplitude. Conclusions: The p.Thr592Ile mutation in the SCN4A gene identified in this Sardinian family was responsible of clinical phenotype of myotonia.


Assuntos
Miotonia , Canal de Sódio Disparado por Voltagem NAV1.4 , Linhagem , Mutação Puntual , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Eletromiografia , Itália , Miotonia/genética , Miotonia Congênita/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética
12.
Biomed Pharmacother ; 176: 116877, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850654

RESUMO

Multiple myeloma (MM) progression is closely dependent on cells in the bone marrow (BM) microenvironment, including fibroblasts (FBs) and immune cells. In their BM niche, MM cells adhere to FBs sustaining immune evasion, drug resistance and the undetectable endurance of tumor cells known as minimal residual disease (MRD). Here, we describe the novel bi-specific designed ankyrin repeat protein (DARPin) α-FAPx4-1BB (MP0310) with FAP-dependent 4-1BB agonistic activity. The α-FAPx4-1BB DARPin simultaneously binds to FAP and 4-1BB overexpressed by activated FBs and immune cells, respectively. Although flow cytometry analysis showed that T and NK cells from MM patients were not activated and did not express 4-1BB, stimulation with daratumumab or elotuzumab, monoclonal antibodies (mAbs) currently used for the treatment of MM, significantly upregulated 4-1BB both in vitro and in MM patients following mAb-based therapy. The mAb-induced 4-1BB overexpression allowed the engagement of α-FAPx4-1BB that acted as a bridge between FAP+FBs and 4-1BB+NK cells. Therefore, α-FAPx4-1BB enhanced both the adhesion of daratumumab-treated NK cells on FBs as well as their activation by improving release of CD107a and perforin, hence MM cell killing via antibody-mediated cell cytotoxicity (ADCC). Interestingly, α-FAPx4-1BB significantly potentiated daratumumab-mediated ADCC in the presence of FBs, suggesting that it may overcome the BM FBs' immunosuppressive effect. Overall, we speculate that treatment with α-FAPx4-1BB may represent a valuable strategy to improve mAb-induced NK cell activity fostering MRD negativity in MM patients through the eradication of latent MRD cells.


Assuntos
Anticorpos Monoclonais Humanizados , Anticorpos Monoclonais , Células Matadoras Naturais , Mieloma Múltiplo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/patologia , Humanos , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais/farmacologia , Linhagem Celular Tumoral , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/agonistas , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/agonistas , Endopeptidases
13.
Curr Opin Pharmacol ; 68: 102329, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36512979

RESUMO

Skeletal muscle ion channelopathies are rare genetic diseases mainly characterized by myotonia (muscle stiffness) or periodic paralysis (muscle weakness). Here, we reviewed the available therapeutic options in non-dystrophic myotonias (NDM) and periodic paralyses (PP), which consists essentially in drug repositioning to address stiffness or weakness attacks. Empirical use followed by successful randomized clinical trials eventually led to the orphan drug designation and marketing authorization granting of mexiletine for NDM and dichlorphenamide for PP. Yet, these treatments neither consider the genetic cause of the diseases nor address the individual variability in drug response. Thus, ongoing research aims at the identification of repurposed drugs alternative to mexiletine and dichlorphenamide to allow personalization of treatment. This review highlights how drug repurposing may represent an efficient strategy in rare diseases, allowing reduction of drug development time and costs in a context in which the return on investment may be particularly challenging.


Assuntos
Canalopatias , Transtornos Miotônicos , Paralisias Periódicas Familiares , Humanos , Reposicionamento de Medicamentos , Canalopatias/tratamento farmacológico , Canalopatias/genética , Mexiletina/uso terapêutico , Diclorofenamida/uso terapêutico , Músculo Esquelético , Paralisias Periódicas Familiares/tratamento farmacológico , Paralisias Periódicas Familiares/genética , Transtornos Miotônicos/genética , Transtornos Miotônicos/terapia , Mutação
14.
Cancers (Basel) ; 15(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37046651

RESUMO

Angiogenesis represents a pivotal hallmark of multiple myeloma (MM) that correlates to patients' prognosis, overall survival, and drug resistance. Hence, several anti-angiogenic drugs that directly target angiogenic cytokines (i.e., monoclonal antibodies, recombinant molecules) or their cognate receptors (i.e., tyrosine kinase inhibitors) have been developed. Additionally, many standard antimyeloma drugs currently used in clinical practice (i.e., immunomodulatory drugs, bisphosphonates, proteasome inhibitors, alkylating agents, glucocorticoids) show anti-angiogenic effects further supporting the importance of inhibiting angiogenesis from potentiating the antimyeloma activity. Here, we review the most important anti-angiogenic therapies used for the management of MM patients with a particular focus on their pharmacological profile and on their anti-angiogenic effect in vitro and in vivo. Despite the promising perspective, the direct targeting of angiogenic cytokines/receptors did not show a great efficacy in MM patients, suggesting the need to a deeper knowledge of the BM angiogenic niche for the design of novel multi-targeting anti-angiogenic therapies.

15.
Cancers (Basel) ; 15(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36765945

RESUMO

Invasive and painful procedures, which often induce feelings of anxiety, are necessary components of pediatric cancer treatment, and adequate pain and anxiety management during these treatments is of pivotal importance. In this context, it is widely recognized that a holistic approach, including pharmacological and non-pharmacological modalities, such as distraction techniques, should be the standard of care. Recent evidence suggested the use of virtual reality (VR) as an effective non-pharmacological intervention in pediatrics. Therefore, this systematic review aims to analyze previously published studies on the effectiveness of VR for the management of pain and/or anxiety in children and adolescents with hematological or solid cancer. Medline, SCOPUS, Web of Science, ProQuest, CINAHL, and The Cochrane Central Register of Controlled Trials were used to search for relevant studies in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses checklist. Randomized controlled trial, crossover trial, cluster randomized trial, and quasi-experimental studies were included. Thirteen studies, published between 1999 and 2022, that fulfilled the inclusion criteria were included. Regarding the primary outcomes measured, pain was considered in five studies, anxiety in three studies, and the remaining five studies analyzed the effectiveness of VR for both pain and anxiety reduction. Our findings suggested a beneficial effect of VR during painful vascular access procedures. Limited data are available on the reduction of anxiety in children with cancer.

16.
Biomedicines ; 11(5)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37239071

RESUMO

Extracellular vesicles (EVs) have emerged as important players in cell-to-cell communication within the bone marrow (BM) of multiple myeloma (MM) patients, where they mediate several tumor-associated processes. Here, we investigate the contribution of fibroblasts-derived EVs (FBEVs) in supporting BM angiogenesis. We demonstrate that FBEVs' cargo contains several angiogenic cytokines (i.e., VEGF, HGF, and ANG-1) that promote an early over-angiogenic effect independent from EVs uptake. Interestingly, co-culture of endothelial cells from MM patients (MMECs) with FBEVs for 1 or 6 h activates the VEGF/VEGFR2, HGF/HGFR, and ANG-1/Tie2 axis, as well as the mTORC2 and Wnt/ß-catenin pathways, suggesting that the early over-angiogenic effect is a cytokine-mediated process. FBEVs internalization occurs after longer exposure of MMECs to FBEVs (24 h) and induces a late over-angiogenic effect by increasing MMECs migration, chemotaxis, metalloproteases release, and capillarogenesis. FBEVs uptake activates mTORC1, MAPK, SRC, and STAT pathways that promote the release of pro-angiogenic cytokines, further supporting the pro-angiogenic milieu. Overall, our results demonstrate that FBEVs foster MM angiogenesis through dual time-related uptake-independent and uptake-dependent mechanisms that activate different intracellular pathways and transcriptional programs, providing the rationale for designing novel anti-angiogenic strategies.

17.
Exp Neurol ; 362: 114342, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36720299

RESUMO

Non-dystrophic myotonias include several entities with possible clinical overlap, i.e. myotonia congenita caused by CLCN1 gene mutations, as well as paramyotonia congenita and sodium channel myotonia caused by SCN4A gene mutations. Herein, we describe the clinical features of five relatives affected by clinical and neurophysiological myotonia, with an aspecific and mixed phenotype. Next-generation sequencing identified the novel p.K1302R variant in SCN4A and the p.H838P variant in CLCN1. Segregation of the two mutations with the disease was confirmed by genotyping affected and non-affected family members. Patch-clamp experiments showed that sodium currents generated by p.K1302R and WT hNav1.4 were very similar. Mutant channel showed a small negative shift (5 mV) in the voltage-dependence of activation, which increased the likelihood of the channel to open at more negative voltages. The p.H838P mutation caused a reduction in chloride current density and a small voltage-dependence shift towards less negative potentials, in agreement with its position into the CBS2 domain of the C-terminus. Our results demonstrated that the mild functional alterations induced by p.K1302R and p.H838P in combination may be responsible for the mixed myotonic phenotypes. The K1302R mutant was sensitive to mexiletine and lamotrigine, suggesting that both drugs might be useful for the K1302R carriers.


Assuntos
Miotonia Congênita , Miotonia , Humanos , Canal de Sódio Disparado por Voltagem NAV1.4 , Mutação , Miotonia/genética , Fenótipo , Canais de Cloreto/genética
18.
ACS Med Chem Lett ; 14(7): 999-1008, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37465302

RESUMO

Several commercially available and newly synthesized riluzole analogs were evaluated in vitro as voltage-gated skeletal muscle sodium-channel blockers. Data obtained from the patch-clamp technique demonstrated that potency is well correlated with lipophilicity and the introduction of a protonatable amino function in the benzothiazole 2-position enhances the use-dependent behavior. The most interesting compound, the 2-piperazine analog of riluzole (14), although slightly less potent than the parent compound in the patch-clamp assay as well as in an in vitro model of myotonia, showed greater use-dependent Nav1.4 blocking activity. Docking studies allowed the identification of the key interactions that 14 makes with the amino acids of the local anesthetic binding site within the pore of the channel. The reported results pave the way for the identification of novel compounds useful in the treatment of cell excitability disorders.

19.
J Pers Med ; 12(2)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35207698

RESUMO

Over 90% of deaths in cancer patients are attributed to tumor drug resistance. Resistance to therapeutic agents can be due to an innate property of cancer cells or can be acquired during chemotherapy. In recent years, it has become increasingly clear that regulation of membrane ion channels is an important mechanism in the development of chemoresistance. Here, we review the contribution of ion channels in drug resistance of various types of cancers, evaluating their potential in clinical management. Several molecular mechanisms have been proposed, including evasion of apoptosis, cell cycle arrest, decreased drug accumulation in cancer cells, and activation of alternative escape pathways such as autophagy. Each of these mechanisms leads to a reduction of the therapeutic efficacy of administered drugs, causing more difficulty in cancer treatment. Thus, targeting ion channels might represent a good option for adjuvant therapies in order to counteract chemoresistance development.

20.
Front Pharmacol ; 13: 958196, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36034862

RESUMO

Myotonia congenita (MC) is an inherited rare disease characterized by impaired muscle relaxation after contraction, resulting in muscle stiffness. It is caused by loss-of-function mutations in the skeletal muscle chloride channel ClC-1, important for the stabilization of resting membrane potential and for the repolarization phase of action potentials. Thanks to in vitro functional studies, the molecular mechanisms by which ClC-1 mutations alter chloride ion influx into the cell have been in part clarified, classifying them in "gating-defective" or "expression-defective" mutations. To date, the treatment of MC is only palliative because no direct ClC-1 activator is available. An ideal drug should be one which is able to correct biophysical defects of ClC-1 in the case of gating-defective mutations or a drug capable to recover ClC-1 protein expression on the plasma membrane for trafficking-defective ones. In this study, we tested the ability of niflumic acid (NFA), a commercial nonsteroidal anti-inflammatory drug, to act as a pharmacological chaperone on trafficking-defective MC mutants (A531V, V947E). Wild-type (WT) or MC mutant ClC-1 channels were expressed in HEK293 cells and whole-cell chloride currents were recorded with the patch-clamp technique before and after NFA incubation. Membrane biotinylation assays and western blot were performed to support electrophysiological results. A531V and V947E mutations caused a decrease in chloride current density due to a reduction of ClC-1 total protein level and channel expression on the plasma membrane. The treatment of A531V and V947E-transfected cells with 50 µM NFA restored chloride currents, reaching levels similar to those of WT. Furthermore, no significant difference was observed in voltage dependence, suggesting that NFA increased protein membrane expression without altering the function of ClC-1. Indeed, biochemical experiments confirmed that V947E total protein expression and its plasma membrane distribution were recovered after NFA incubation, reaching protein levels similar to WT. Thus, the use of NFA as a pharmacological chaperone in trafficking defective ClC-1 channel mutations could represent a good strategy in the treatment of MC. Because of the favorable safety profile of this drug, our study may easily open the way for confirmatory human pilot studies aimed at verifying the antimyotonic activity of NFA in selected patients carrying specific ClC-1 channel mutations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA