Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
2.
Poult Sci ; 103(8): 103890, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38870613

RESUMO

Generation of transgenic birds can be achieved by temporal suppression of endogenous spermatogenesis in males prior to primordial germ cell implantation. One of many established methods to induce male sterility is the intraperitoneal injection of busulfan, an alkylating agent. Nevertheless, the use of busulfan injections, which may also affect hematopoietic stem cells, carries the risk of potential lethality in animals. Given their safety and non-toxic nature, it has been demonstrated that intratesticular busulfan injections in mammals are less effective than intraperitoneal injections. This study aimed to compare, for the first time, the sterility and toxicity effects of intraperitoneal vs. intratesticular busulfan injections in quail and chickens. Our experimental design involved a previously established single intraperitoneal busulfan injection of 40 mg/kg of body weight (BW). In quail, busulfan was then administered intratesticularly at 3 different concentrations (6, 12, and 20 mg/kg BW), while in chickens, the working concentration was 20 mg/kg BW. We found that a single intraperitoneal busulfan injection of 40 mg/kg of BW resulted in 100% mortality in the treated roosters. In quails, however, this concentration only caused a temporary suppression of fertility for a 15-d period. Moreover, we found that a higher dose of intratesticular injection of busulfan is required to suppress spermatogenesis in quail (20 mg/kg BW) compared to mammals (4 mg/kg BW). Following these findings, we further confirmed that intratesticular injection of 20 mg/kg BW busulfan into roosters did not affect their overall viability. However, it induced a temporary state of male sterility, consistent with the effects observed with intraperitoneal injections. Hence, our data demonstrate that quail and chicken respond differently to busulfan administration. Furthermore, the present study provides evidence that direct injection into the rooster testes causes less physiological stress than intraperitoneal injection.


Assuntos
Bussulfano , Galinhas , Coturnix , Espermatogênese , Testículo , Animais , Bussulfano/administração & dosagem , Masculino , Espermatogênese/efeitos dos fármacos , Testículo/efeitos dos fármacos , Injeções Intraperitoneais/veterinária , Galinhas/fisiologia , Coturnix/fisiologia , Injeções/veterinária , Infertilidade Masculina/veterinária , Infertilidade Masculina/induzido quimicamente
3.
Sci Rep ; 12(1): 16858, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207377

RESUMO

Bucky ball was identified as germ plasm organizer in zebrafish and has proven crucial for Balbiani body condensation. A synteny comparison identified an uncharacterized gene locus in the chicken genome as predicted avian counterpart. Here, we present experimental evidence that this gene locus indeed encodes a 'Bucky ball' equivalent in matured oocytes and early embryos of chicken. Heterologous expression of Bucky ball fusion proteins both from zebrafish and chicken with a fluorescent reporter revealed unique patterns indicative for liquid-liquid phase separation of intrinsically disordered proteins. Immuno-labeling detected Bucky ball from oocytes to blastoderms with diffuse distribution in matured oocytes, aggregation in first cleavage furrows, and co-localization to the chicken vasa homolog (CVH). Later, Bucky ball translocated to the cytoplasm of first established cells, and showed nuclear translocation during the major zygotic activation together with CVH. Remarkably, during the phase of area pellucida formation, Bucky ball translocated back into the cytoplasm at stage EGK VI, whereas CVH remained within the nuclei. The condensation of Bucky ball and co-localization with CVH in cleavage furrows and nuclei of the centrally located cells strongly suggests chicken Bucky ball as a germ plasm organizer in birds, and indicate a special importance of the major zygotic activation for germline specification.


Assuntos
Proteínas Intrinsicamente Desordenadas , Peixe-Zebra , Animais , Galinhas/genética , Citoplasma/metabolismo , Células Germinativas/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Oócitos/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
4.
Sci Rep ; 12(1): 15587, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36114266

RESUMO

Primordial germ cells (PGCs), the precursors of sperm and oocytes, pass on the genetic material to the next generation. The previously established culture system of chicken PGCs holds many possibilities for functional genomics studies and the rapid introduction of desired traits. Here, we established a CRISPR/Cas9-mediated genome editing protocol for the genetic modification of PGCs derived from chickens with blue eggshell color. The sequence targeted in the present report is a provirus (EAV-HP) insertion in the 5'-flanking region of the SLCO1B3 gene on chromosome 1 in Araucana chickens, which is supposedly responsible for the blue eggshell color. We designed pairs of guide RNAs (gRNAs) targeting the entire 4.2 kb provirus region. Following transfection of PGCs with the gRNA, genomic DNA was isolated and analyzed by mismatch cleavage assay (T7EI). For absolute quantification of the targeting efficiencies in homozygous blue-allele bearing PGCs a digital PCR was established, which revealed deletion efficiencies of 29% when the wildtype Cas9 was used, and 69% when a high-fidelity Cas9 variant was employed. Subsequent single cell dilutions of edited PGCs yielded 14 cell clones with homozygous deletion of the provirus. A digital PCR assay proved the complete absence of this provirus in cell clones. Thus, we demonstrated the high efficiency of the CRISPR/Cas9 system in introducing a large provirus deletion in chicken PGCs. Our presented workflow is a cost-effective and rapid solution for screening the editing success in transfected PGCs.


Assuntos
Provírus , RNA Guia de Cinetoplastídeos , Animais , Sistemas CRISPR-Cas/genética , Galinhas/genética , Células Germinativas , Homozigoto , Masculino , Reação em Cadeia da Polimerase , Provírus/genética , RNA Guia de Cinetoplastídeos/genética , Sêmen , Deleção de Sequência
5.
Sci Rep ; 11(1): 12923, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34155221

RESUMO

The chicken (Gallus gallus) is one of the most common and widespread domestic species, with an estimated total population of 25 billion birds worldwide. The vast majority of chickens in agriculture originate from hybrid breeding programs and is concentrated on few commercially used high performance lines, whereas numerous local and indigenous breeds are at risk to become extinct. To preserve the genomic resources of rare and endangered chicken breeds innovative methods are necessary. Here, we established a solid workflow for the derivation and biobanking of chicken primordial germ cells (PGCs) from blue layer hybrids. To achieve this, embryos of a cross of heterozygous blue egg layers were sampled to obtain blood derived and gonadal male as well as female PGCs of different genotypes (homozygous, heterozygous and nullizygous blue-allele bearing). The total efficiency of established PGC lines was 45% (47/104) within an average of 49 days until they reached sufficient numbers of cells for cryopreservation. The stem-cell character of the cultivated PGCs was confirmed by SSEA-1 immunostaining, and RT-PCR amplification of the pluripotency- and PGC-specific genes cPOUV, cNANOG, cDAZL and CVH. The Sleeping Beauty transposon system allowed to generate a stable integration of a Venus fluorophore reporter into the chicken genome. Finally, we demonstrated that, after re-transfer into chicken embryos, Venus-positive PGCs migrated and colonized the forming gonads. Semen samples of 13 raised cell chimeric roosters were analyzed by flow cytometry for the efficiency of germline colonization by the transferred PGCs carrying the Venus reporter and their proper differentiation into vital spermatids. Thus, we provide a proof-of-concept study for the potential use of PGCs for the cryobanking of rare breeds or rare alleles.


Assuntos
Galinhas , Quimera/genética , Células Germinativas/citologia , Células Germinativas/metabolismo , Animais , Biomarcadores , Técnicas de Cultura de Células , Diferenciação Celular , Movimento Celular/genética , Células Cultivadas , Feminino , Gônadas/citologia , Hibridização Genética , Imunofenotipagem , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA