Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(4)2023 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36835108

RESUMO

MicroRNAs are non-coding RNAs that serve as regulatory molecules in a variety of pathways such as inflammation, metabolism, homeostasis, cell machinery, and development. With the progression of sequencing methods and modern bioinformatics tools, novel roles of microRNAs in regulatory mechanisms and pathophysiological states continue to expand. Advances in detection methods have further enabled larger adoption of studies utilizing minimal sample volumes, allowing the analysis of microRNAs in low-volume biofluids, such as the aqueous humor and tear fluid. The reported abundance of extracellular microRNAs in these biofluids has prompted studies to explore their biomarker potential. This review compiles the current literature reporting microRNAs in human tear fluid and their association with ocular diseases including dry eye disease, Sjögren's syndrome, keratitis, vernal keratoconjunctivitis, glaucoma, diabetic macular edema, and diabetic retinopathy, as well as non-ocular diseases, including Alzheimer's and breast cancer. We also summarize the known roles of these microRNAs and shed light on the future progression of this field.


Assuntos
Retinopatia Diabética , Edema Macular , MicroRNAs , Síndrome de Sjogren , Humanos , MicroRNAs/metabolismo , Retinopatia Diabética/metabolismo , Edema Macular/metabolismo , Lágrimas/metabolismo , Síndrome de Sjogren/metabolismo , Biomarcadores/metabolismo
2.
Invest Ophthalmol Vis Sci ; 65(3): 2, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441890

RESUMO

Purpose: Tear fluid is a complex and dynamic biological fluid that plays essential roles in maintaining ocular homeostasis and protecting against the external environment. Owing to the small sample volume, studying the tear proteome is challenging. However, advances in high-resolution mass spectrometry have expanded tear proteome profiling, revealing >500 unique proteins. Tears are emerging as a noninvasive source of biomarkers for both ocular and systemic diseases; nevertheless, intraday variability of proteins in tear fluid remains questionable. This study investigates intraday variations in the tear fluid proteome to identify stable proteins that could act as candidate biomarkers. Methods: Tear samples from 15 individuals at four time points (10 am, 12 pm, 2 pm, and 4 pm) were analyzed using mass spectrometry to evaluate protein variation during these intervals. Technical variation was assessed by analyzing pooled samples and was subtracted from the total variation to isolate biological variability. Results: Owing to high technical variation, low-abundant proteins were filtered, and only 115 proteins met the criteria for further analysis. These criteria include being detected at all four time points in at least eight subjects, having a mean peptide-spectrum match count greater than 5, and having a technical variation less than 0.10. Lactotransferrin, lipocalin-1, and several immunoglobulins were among the 51 stable proteins (mean biological coefficient of variation < 0.10). Additionally, 43 proteins displayed significant slopes across the 4 time points, with 17 increasing and 26 decreasing over time. Conclusions: These findings contribute to the understanding of tear fluid dynamics and further expand our knowledge of the tear proteome.


Assuntos
Dieta com Restrição de Proteínas , Proteoma , Humanos , Correlação de Dados , Olho , Biomarcadores
3.
J Proteomics ; 300: 105167, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38574989

RESUMO

Diabetic kidney disease (DKD) poses a significant health challenge for individuals with diabetes. At its initial stages, DKD often presents asymptomatically, and the standard for non-invasive diagnosis, the albumin-creatinine ratio (ACR), employs discrete categorizations (normal, microalbuminuria, macroalbuminuria) with limitations in sensitivity and specificity across diverse population cohorts. Single biomarker reliance further restricts the predictive value in clinical settings. Given the escalating prevalence of diabetes, our study uses proteomic technologies to identify novel urinary proteins as supplementary DKD biomarkers. A total of 158 T1D subjects provided urine samples, with 28 (15 DKD; 13 non-DKD) used in the discovery stage and 131 (45 DKD; 40 pDKD; 46 non-DKD) used in the confirmation. We identified eight proteins (A1BG, AMBP, AZGP1, BTD, RBP4, ORM2, GM2A, and PGCP), all of which demonstrated excellent area-under-the-curve (AUC) values (0.959 to 0.995) in distinguishing DKD from non-DKD. Furthermore, this multi-marker panel successfully segregated the most ambiguous group (microalbuminuria) into three distinct clusters, with 80% of subjects aligning either as DKD or non-DKD. The remaining 20% exhibited continued uncertainty. Overall, the use of these candidate urinary proteins allowed for the better classification of DKD and offered potential for significant improvements in the early identification of DKD in T1D populations.


Assuntos
Biomarcadores , Diabetes Mellitus Tipo 1 , Nefropatias Diabéticas , Diagnóstico Precoce , Humanos , Nefropatias Diabéticas/urina , Nefropatias Diabéticas/diagnóstico , Diabetes Mellitus Tipo 1/urina , Diabetes Mellitus Tipo 1/complicações , Masculino , Feminino , Biomarcadores/urina , Adulto , Medição de Risco , Proteômica/métodos , Pessoa de Meia-Idade , Albuminúria/urina , Albuminúria/diagnóstico , Proteínas Plasmáticas de Ligação ao Retinol/urina , Proteínas Plasmáticas de Ligação ao Retinol/metabolismo , Glicoproteína Zn-alfa-2
4.
J Pers Med ; 13(9)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37763167

RESUMO

This study discovers the complement protein profile in the aqueous humor (AH) of human subjects and investigates its association with primary open-angle glaucoma (POAG) pathogenesis. Among the 32 complement proteins identified, 22 were highly abundant and detected in more than 50% of AH samples. The most predominant active complement proteins in the AH are C3, C4B, C4A, CFB, CFD, and C9. Additionally, the most prevalent complement regulators and receptors include CLU, SERPING1, F2, CFH, CFI, and VTN. Significant alterations in complement proteins were observed in individuals with POAG compared to those with cataracts. Specifically, complement protein F2 was upregulated, while C8G, C6, and CFH were downregulated in POAG samples. Stratification of the samples by race and sex revealed distinct alterations of complement proteins in patients with POAG. In the African American cohort, five complement proteins (C4A, C4B, F2, C7, and C3) were upregulated in POAG compared to cataract patients. In the Caucasian cohort, eight complement proteins (C3, SERPING1, CFI, CLU, CFHR1, C8G, C6, and CFH) were downregulated in the POAG samples compared to the cataract samples. Within the male cohort, three complement proteins (CLU, C6, and CFH) were downregulated in POAG patients compared to those with cataracts. Whereas, within the female cohort, two complement proteins (C4B and F2) were upregulated and one (C8G) downregulated in the POAG samples when compared to cataracts. Discerning these changes in the AH complement protein profile will assist in the development of tailored therapies to modulate the complement system for managing ocular disorders. These insights may also lead to novel biomarkers for diagnosing and monitoring disease progression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA