Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(23): 5699-5714.e11, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34735795

RESUMO

Extension of the interval between vaccine doses for the BNT162b2 mRNA vaccine was introduced in the United Kingdom to accelerate population coverage with a single dose. At this time, trial data were lacking, and we addressed this in a study of United Kingdom healthcare workers. The first vaccine dose induced protection from infection from the circulating alpha (B.1.1.7) variant over several weeks. In a substudy of 589 individuals, we show that this single dose induces severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralizing antibody (NAb) responses and a sustained B and T cell response to the spike protein. NAb levels were higher after the extended dosing interval (6-14 weeks) compared with the conventional 3- to 4-week regimen, accompanied by enrichment of CD4+ T cells expressing interleukin-2 (IL-2). Prior SARS-CoV-2 infection amplified and accelerated the response. These data on dynamic cellular and humoral responses indicate that extension of the dosing interval is an effective immunogenic protocol.


Assuntos
Vacinas contra COVID-19/imunologia , Vacinas Sintéticas/imunologia , Adulto , Idoso , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacina BNT162 , COVID-19/sangue , COVID-19/imunologia , COVID-19/virologia , Apresentação Cruzada/imunologia , Relação Dose-Resposta Imunológica , Etnicidade , Feminino , Humanos , Imunidade , Imunoglobulina G/imunologia , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Padrões de Referência , SARS-CoV-2/imunologia , Linfócitos T/imunologia , Resultado do Tratamento , Adulto Jovem , Vacinas de mRNA
2.
Plant J ; 117(3): 713-728, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37964699

RESUMO

Genome-wide association studies (GWAS) identified thousands of genetic loci associated with complex plant traits, including many traits of agronomical importance. However, functional interpretation of GWAS results remains challenging because of large candidate regions due to linkage disequilibrium. High-throughput omics technologies, such as genomics, transcriptomics, proteomics and metabolomics open new avenues for integrative systems biological analyses and help to nominate systems information supported (prime) candidate genes. In the present study, we capitalise on a diverse canola population with 477 spring-type lines which was previously analysed by high-throughput phenotyping of growth-related traits and by RNA sequencing and metabolite profiling for multi-omics-based hybrid performance prediction. We deepened the phenotypic data analysis, now providing 123 time-resolved image-based traits, to gain insight into the complex relations during early vegetative growth and reanalysed the transcriptome data based on the latest Darmor-bzh v10 genome assembly. Genome-wide association testing revealed 61 298 robust quantitative trait loci (QTL) including 187 metabolite QTL, 56814 expression QTL and 4297 phenotypic QTL, many clustered in pronounced hotspots. Combining information about QTL colocalisation across omics layers and correlations between omics features allowed us to discover prime candidate genes for metabolic and vegetative growth variation. Prioritised candidate genes for early biomass accumulation include A06p05760.1_BnaDAR (PIAL1), A10p16280.1_BnaDAR, C07p48260.1_BnaDAR (PRL1) and C07p48510.1_BnaDAR (CLPR4). Moreover, we observed unequal effects of the Brassica A and C subgenomes on early biomass production.


Assuntos
Estudo de Associação Genômica Ampla , Multiômica , Locos de Características Quantitativas/genética , Genômica , Fenótipo
3.
Physiol Plant ; 176(2): e14255, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38528708

RESUMO

Plants have evolved and adapted under dynamic environmental conditions, particularly to fluctuating light, but plant research has often focused on constant growth conditions. To quantitatively asses the adaptation to fluctuating light, a panel of 384 natural Arabidopsis thaliana accessions was analyzed in two parallel independent experiments under fluctuating and constant light conditions in an automated high-throughput phenotyping system upgraded with supplemental LEDs. While the integrated daily photosynthetically active radiation was the same under both light regimes, plants in fluctuating light conditions accumulated significantly less biomass and had lower leaf area during their measured vegetative growth than plants in constant light. A total of 282 image-derived architectural and/or color-related traits at six common time points, and 77 photosynthesis-related traits from one common time point were used to assess their associations with genome-wide natural variation for both light regimes. Out of the 3000 significant marker-trait associations (MTAs) detected, only 183 (6.1%) were common for fluctuating and constant light conditions. The prevalence of light regime-specific QTL indicates a complex adaptation. Genes in linkage disequilibrium with fluctuating light-specific MTAs with an adjusted repeatability value >0.5 were filtered for gene ontology terms containing "photo" or "light", yielding 15 selected candidates. The candidate genes are involved in photoprotection, PSII maintenance and repair, maintenance of linear electron flow, photorespiration, phytochrome signaling, and cell wall expansion, providing a promising starting point for further investigations into the response of Arabidopsis thaliana to fluctuating light conditions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/fisiologia , Prevalência , Fotossíntese/genética , Proteínas de Arabidopsis/metabolismo , Fenótipo
4.
J Exp Bot ; 74(17): 5341-5362, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37306093

RESUMO

Plant growth is a complex process affected by a multitude of genetic and environmental factors and their interactions. To identify genetic factors influencing plant performance under different environmental conditions, vegetative growth was assessed in Arabidopsis thaliana cultivated under constant or fluctuating light intensities, using high-throughput phenotyping and genome-wide association studies. Daily automated non-invasive phenotyping of a collection of 382 Arabidopsis accessions provided growth data during developmental progression under different light regimes at high temporal resolution. Quantitative trait loci (QTL) for projected leaf area, relative growth rate, and PSII operating efficiency detected under the two light regimes were predominantly condition-specific and displayed distinct temporal activity patterns, with active phases ranging from 2 d to 9 d. Eighteen protein-coding genes and one miRNA gene were identified as potential candidate genes at 10 QTL regions consistently found under both light regimes. Expression patterns of three candidate genes affecting projected leaf area were analysed in time-series experiments in accessions with contrasting vegetative leaf growth. These observations highlight the importance of considering both environmental and temporal patterns of QTL/allele actions and emphasize the need for detailed time-resolved analyses under diverse well-defined environmental conditions to effectively unravel the complex and stage-specific contributions of genes affecting plant growth processes.


Assuntos
Arabidopsis , Locos de Características Quantitativas , Locos de Características Quantitativas/genética , Arabidopsis/genética , Estudo de Associação Genômica Ampla , Folhas de Planta/genética
5.
J Exp Bot ; 74(12): 3630-3650, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37010230

RESUMO

EARLY FLOWERING 3 (ELF3) is an important regulator of various physiological and developmental processes and hence may serve to improve plant adaptation which will be essential for future plant breeding. To expand the limited knowledge on barley ELF3 in determining agronomic traits, we conducted field studies with heterogeneous inbred families (HIFs) derived from selected lines of the wild barley nested association mapping population HEB-25. During two growing seasons, phenotypes of nearly isogenic HIF sister lines, segregating for exotic and cultivated alleles at the ELF3 locus, were compared for 10 developmental and yield-related traits. We determine novel exotic ELF3 alleles and show that HIF lines, carrying the exotic ELF3 allele, accelerated plant development compared with the cultivated ELF3 allele, depending on the genetic background. Remarkably, the most extreme effects on phenology could be attributed to one exotic ELF3 allele differing from the cultivated Barke ELF3 allele in only one single nucleotide polymorphism (SNP). This SNP causes an amino acid substitution (W669G), which as predicted has an impact on the protein structure of ELF3. Consequently, it may affect phase separation behaviour and nano-compartment formation of ELF3 and, potentially, also its local cellular interactions causing significant trait differences between HIF sister lines.


Assuntos
Hordeum , Locos de Características Quantitativas , Mapeamento Cromossômico , Hordeum/genética , Alelos , Melhoramento Vegetal , Desenvolvimento Vegetal
6.
J Exp Bot ; 72(2): 476-490, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33080013

RESUMO

We assessed early vegetative growth in a population of 382 accessions of Arabidopsis thaliana using automated non-invasive high-throughput phenotyping. All accessions were imaged daily from 7 d to 18 d after sowing in three independent experiments and genotyped using the Affymetrix 250k SNP array. Projected leaf area (PLA) was derived from image analysis and used to calculate relative growth rates (RGRs). In addition, initial seed size was determined. The generated datasets were used jointly for a genome-wide association study that identified 238 marker-trait associations (MTAs) individually explaining up to 8% of the total phenotypic variation. Co-localization of MTAs occurred at 33 genomic positions. At 21 of these positions, sequential co-localization of MTAs for 2-9 consecutive days was observed. The detected MTAs for PLA and RGR could be grouped according to their temporal expression patterns, emphasizing that temporal variation of MTA action can be observed even during the vegetative growth phase, a period of continuous formation and enlargement of seemingly similar rosette leaves. This indicates that causal genes may be differentially expressed in successive periods. Analyses of the temporal dynamics of biological processes are needed to gain important insight into the molecular mechanisms of growth-controlling processes in plants.


Assuntos
Arabidopsis , Fenômenos Biológicos , Arabidopsis/genética , Estudo de Associação Genômica Ampla , Fenótipo , Locos de Características Quantitativas/genética
7.
Theor Appl Genet ; 134(4): 1147-1165, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33523261

RESUMO

KEY MESSAGE: Complementing or replacing genetic markers with transcriptomic data and use of reproducing kernel Hilbert space regression based on Gaussian kernels increases hybrid prediction accuracies for complex agronomic traits in canola. In plant breeding, hybrids gained particular importance due to heterosis, the superior performance of offspring compared to their inbred parents. Since the development of new top performing hybrids requires labour-intensive and costly breeding programmes, including testing of large numbers of experimental hybrids, the prediction of hybrid performance is of utmost interest to plant breeders. In this study, we tested the effectiveness of hybrid prediction models in spring-type oilseed rape (Brassica napus L./canola) employing different omics profiles, individually and in combination. To this end, a population of 950 F1 hybrids was evaluated for seed yield and six other agronomically relevant traits in commercial field trials at several locations throughout Europe. A subset of these hybrids was also evaluated in a climatized glasshouse regarding early biomass production. For each of the 477 parental rapeseed lines, 13,201 single nucleotide polymorphisms (SNPs), 154 primary metabolites, and 19,479 transcripts were determined and used as predictive variables. Both, SNP markers and transcripts, effectively predict hybrid performance using (genomic) best linear unbiased prediction models (gBLUP). Compared to models using pure genetic markers, models incorporating transcriptome data resulted in significantly higher prediction accuracies for five out of seven agronomic traits, indicating that transcripts carry important information beyond genomic data. Notably, reproducing kernel Hilbert space regression based on Gaussian kernels significantly exceeded the predictive abilities of gBLUP models for six of the seven agronomic traits, demonstrating its potential for implementation in future canola breeding programmes.


Assuntos
Brassica napus/genética , Cruzamentos Genéticos , Genoma de Planta , Vigor Híbrido , Metaboloma , Polimorfismo de Nucleotídeo Único , Transcriptoma , Brassica napus/crescimento & desenvolvimento , Brassica napus/metabolismo , Hibridização Genética , Modelos Genéticos , Fenótipo , Melhoramento Vegetal , Locos de Características Quantitativas , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
8.
Plant J ; 100(4): 851-862, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31169333

RESUMO

Molecular identification of mutant alleles responsible for certain phenotypic alterations is a central goal of genetic analyses. In this study we describe a rapid procedure suitable for the identification of induced recessive and dominant mutations applied to two Zea mays mutants expressing a dwarf and a pale green phenotype, respectively, which were obtained through pollen ethyl methanesulfonate (EMS) mutagenesis. First, without prior backcrossing, induced mutations (single nucleotide polymorphisms, SNPs) segregating in a (M2 ) family derived from a heterozygous (M1 ) parent were identified using whole-genome shotgun (WGS) sequencing of a small number of (M2 ) individuals with mutant and wild-type phenotypes. Second, the state of zygosity of the mutation causing the phenotype was determined for each sequenced individual by phenotypic segregation analysis of the self-pollinated (M3 ) offspring. Finally, we filtered for segregating EMS-induced SNPs whose state of zygosity matched the determined state of zygosity of the mutant locus in each sequenced (M2 ) individuals. Through this procedure, combining sequencing of individuals and Mendelian inheritance, three and four SNPs in linkage passed our zygosity filter for the homozygous dwarf and heterozygous pale green mutation, respectively. The dwarf mutation was found to be allelic to the an1 locus and caused by an insertion in the largest exon of the AN1 gene. The pale green mutation affected the nuclear W2 gene and was caused by a non-synonymous amino acid exchange in encoded chloroplast DNA polymerase with a predicted deleterious effect. This coincided with lower cpDNA levels in pale green plants.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação , Zea mays/genética , Análise Mutacional de DNA/métodos , Metanossulfonato de Etila/farmacologia , Genes Dominantes , Genes Recessivos , Genoma de Planta , Pólen/efeitos dos fármacos , Pólen/genética , Polimorfismo de Nucleotídeo Único , Fatores de Tempo , Zea mays/efeitos dos fármacos
9.
Plant Biotechnol J ; 18(1): 68-82, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31125482

RESUMO

A major challenge of plant biology is to unravel the genetic basis of complex traits. We took advantage of recent technical advances in high-throughput phenotyping in conjunction with genome-wide association studies to elucidate genotype-phenotype relationships at high temporal resolution. A diverse Brassica napus population from a commercial breeding programme was analysed by automated non-invasive phenotyping. Time-resolved data for early growth-related traits, including estimated biovolume, projected leaf area, early plant height and colour uniformity, were established and complemented by fresh and dry weight biomass. Genome-wide SNP array data provided the framework for genome-wide association analyses. Using time point data and relative growth rates, multiple robust main effect marker-trait associations for biomass and related traits were detected. Candidate genes involved in meristem development, cell wall modification and transcriptional regulation were detected. Our results demonstrate that early plant growth is a highly complex trait governed by several medium and many small effect loci, most of which act only during short phases. These observations highlight the importance of taking the temporal patterns of QTL/allele actions into account and emphasize the need for detailed time-resolved analyses to effectively unravel the complex and stage-specific contributions of genes affecting growth processes that operate at different developmental phases.


Assuntos
Brassica napus/genética , Fenótipo , Locos de Características Quantitativas , Brassica napus/crescimento & desenvolvimento , Mapeamento Cromossômico , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala
10.
Plant Cell Environ ; 43(2): 303-314, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31472094

RESUMO

The accumulation of reactive oxygen species has been associated with a loss of seed viability. Therefore, we have investigated the germination ability of a range of seed stocks, including two wheat collections and one barley collection that had been dry-aged for 5-40 years. Metabolite profiling analysis revealed that the accumulation of glycerol was negatively correlated with the ability to germinate in all seed sets. Furthermore, lipid degradation products such as glycerol phosphates and galactose were accumulated in some seed sets. A quantitative analysis of nonoxidized and oxidized lipids was performed in the wheat seed set that showed the greatest variation in germination. This analysis revealed that the levels of fully acylated and nonoxidized storage lipids like triacylglycerols and structural lipids like phospho- and galactolipids were decreasing. Moreover, the abundance of oxidized variants and hydrolysed products such as mono-/diacylglycerols, lysophospholipids, and fatty acids accumulated as viability decreased. The proportional formation of oxidized and nonoxidized fatty acids provides evidence for an enzymatic hydrolysis of specifically oxidized lipids in dry seeds. The results link reactive oxygen species with lipid oxidation, structural damage, and death in long-term aged seeds.


Assuntos
Germinação/fisiologia , Metabolismo dos Lipídeos , Sementes/metabolismo , Triticum/fisiologia , Ácidos Graxos/metabolismo , Galactose/metabolismo , Glicerol/metabolismo , Hidrólise , Lipídeos , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Triglicerídeos/metabolismo
11.
J Exp Bot ; 71(2): 669-683, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31087074

RESUMO

Crop yield stability requires an attenuation of the reduction of yield losses caused by environmental stresses such as drought. Using a combination of metabolomics and high-throughput colorimetric assays, we analysed central metabolism and oxidative stress status in the flag leaf of 292 indica rice (Oryza sativa) accessions. Plants were grown in the field and were, at the reproductive stage, exposed to either well-watered or drought conditions to identify the metabolic processes associated with drought-induced grain yield loss. Photorespiration, protein degradation, and nitrogen recycling were the main processes involved in the drought-induced leaf metabolic reprogramming. Molecular markers of drought tolerance and sensitivity in terms of grain yield were identified using a multivariate model based on the values of the metabolites and enzyme activities across the population. The model highlights the central role of the ascorbate-glutathione cycle, particularly dehydroascorbate reductase, in minimizing drought-induced grain yield loss. In contrast, malondialdehyde was an accurate biomarker for grain yield loss, suggesting that drought-induced lipid peroxidation is the major constraint under these conditions. These findings highlight new breeding targets for improved rice grain yield stability under drought.


Assuntos
Biomarcadores/metabolismo , Secas , Oryza/fisiologia , Grão Comestível/crescimento & desenvolvimento , Oryza/genética , Oryza/crescimento & desenvolvimento , Estresse Fisiológico
12.
Planta ; 250(1): 41-57, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30904943

RESUMO

MAIN CONCLUSION: The plasticity of plant growth response to differing nitrate availability renders the identification of biomarkers difficult, but allows access to genetic factors as tools to modulate root systems to a wide range of soil conditions. Nitrogen availability is a major determinant of crop yield. While the application of fertiliser substantially increases the yield on poor soils, it also causes nitrate pollution of water resources and high costs for farmers. Increasing nitrogen use efficiency in crop plants is a necessary step to implement low-input agricultural systems. We exploited the genetic diversity present in the worldwide Arabidopsis thaliana population to study adaptive growth patterns and changes in gene expression associated with chronic low nitrate stress, to identify biomarkers associated with good plant performance under low nitrate availability. Arabidopsis accessions were grown on agar plates with limited and sufficient supply of nitrate to measure root system architecture as well as shoot and root fresh weight. Differential gene expression was determined using Affymetrix ATH1 arrays. We show that the response to differing nitrate availability is highly variable in Arabidopsis accessions. Analyses of vegetative shoot growth and root system architecture identified accession-specific reaction modes to cope with limited nitrate availability. Transcription and epigenetic factors were identified as important players in the adaption to limited nitrogen in a global gene expression analysis. Five nitrate-responsive genes emerged as possible biomarkers for NUE in Arabidopsis. The plasticity of plant growth in response to differing nitrate availability in the substrate renders the identification of morphological and molecular features as biomarkers difficult, but at the same time allows access to a multitude of genetic factors which can be used as tools to modulate and adjust root systems to a wide range of soil conditions.


Assuntos
Arabidopsis/genética , Variação Genética , Nitratos/metabolismo , Nitrogênio/metabolismo , Adaptação Fisiológica , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Brotos de Planta/genética , Brotos de Planta/fisiologia , Solo/química
13.
Plant J ; 89(2): 366-380, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27714888

RESUMO

Hitherto, most quantitative trait loci of maize growth and biomass yield have been identified for a single time point, usually the final harvest stage. Through this approach cumulative effects are detected, without considering genetic factors causing phase-specific differences in growth rates. To assess the genetics of growth dynamics, we employed automated non-invasive phenotyping to monitor the plant sizes of 252 diverse maize inbred lines at 11 different developmental time points; 50 k SNP array genotype data were used for genome-wide association mapping and genomic selection. The heritability of biomass was estimated to be over 71%, and the average prediction accuracy amounted to 0.39. Using the individual time point data, 12 main effect marker-trait associations (MTAs) and six pairs of epistatic interactions were detected that displayed different patterns of expression at various developmental time points. A subset of them also showed significant effects on relative growth rates in different intervals. The detected MTAs jointly explained up to 12% of the total phenotypic variation, decreasing with developmental progression. Using non-parametric functional mapping and multivariate mapping approaches, four additional marker loci affecting growth dynamics were detected. Our results demonstrate that plant biomass accumulation is a complex trait governed by many small effect loci, most of which act at certain restricted developmental phases. This highlights the need for investigation of stage-specific growth affecting genes to elucidate important processes operating at different developmental phases.


Assuntos
Variação Genética , Zea mays/crescimento & desenvolvimento , Zea mays/genética , Epistasia Genética , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Ensaios de Triagem em Larga Escala/métodos , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
14.
Plant Physiol ; 175(2): 600-618, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28801536

RESUMO

Lipid oxidation is a process ubiquitous in life, but the direct and comprehensive analysis of oxidized lipids has been limited by available analytical methods. We applied high-resolution liquid chromatography-mass spectrometry (LC-MS) and tandem mass spectrometry (MS/MS) to quantify oxidized lipids (glycerides, fatty acids, phospholipids, lysophospholipids, and galactolipids) and implemented a platform-independent high-throughput-amenable analysis pipeline for the high-confidence annotation and acyl composition analysis of oxidized lipids. Lipid contents of 90 different naturally aged wheat (Triticum aestivum) seed stocks were quantified in an untargeted high-resolution LC-MS experiment, resulting in 18,556 quantitative mass-to-charge ratio features. In a posthoc liquid chromatography-tandem mass spectrometry experiment, high-resolution MS/MS spectra (5 mD accuracy) were recorded for 8,957 out of 12,080 putatively monoisotopic features of the LC-MS data set. A total of 353 nonoxidized and 559 oxidized lipids with up to four additional oxygen atoms were annotated based on the accurate mass recordings (1.5 ppm tolerance) of the LC-MS data set and filtering procedures. MS/MS spectra available for 828 of these annotations were analyzed by translating experimentally known fragmentation rules of lipids into the fragmentation of oxidized lipids. This led to the identification of 259 nonoxidized and 365 oxidized lipids by both accurate mass and MS/MS spectra and to the determination of acyl compositions for 221 nonoxidized and 295 oxidized lipids. Analysis of 15-year aged wheat seeds revealed increased lipid oxidation and hydrolysis in seeds stored in ambient versus cold conditions.


Assuntos
Cromatografia Líquida/métodos , Lipídeos/química , Espectrometria de Massas em Tandem/métodos , Triticum/química , Automação , Oxirredução , Sementes/química
15.
PLoS Genet ; 11(1): e1004920, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25569172

RESUMO

There has been much excitement about the possibility that exposure to specific environments can induce an ecological memory in the form of whole-sale, genome-wide epigenetic changes that are maintained over many generations. In the model plant Arabidopsis thaliana, numerous heritable DNA methylation differences have been identified in greenhouse-grown isogenic lines, but it remains unknown how natural, highly variable environments affect the rate and spectrum of such changes. Here we present detailed methylome analyses in a geographically dispersed A. thaliana population that constitutes a collection of near-isogenic lines, diverged for at least a century from a common ancestor. Methylome variation largely reflected genetic distance, and was in many aspects similar to that of lines raised in uniform conditions. Thus, even when plants are grown in varying and diverse natural sites, genome-wide epigenetic variation accumulates mostly in a clock-like manner, and epigenetic divergence thus parallels the pattern of genome-wide DNA sequence divergence.


Assuntos
Metilação de DNA/genética , Epigênese Genética , Variação Genética , Genoma de Planta , Arabidopsis , Elementos de DNA Transponíveis/genética , DNA de Plantas/genética , Plantas Geneticamente Modificadas/genética
16.
Plant J ; 88(5): 826-838, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27520391

RESUMO

Fumarate and malate are known intermediates of the TCA cycle, a mitochondrial metabolic pathway generating NADH for respiration. Arabidopsis thaliana and other Brassicaceae contain an additional cytosolic fumarase (FUM2) that functions in carbon assimilation and nitrogen use. Here, we report the identification of a hitherto unknown FUM2 promoter insertion/deletion (InDel) polymorphism found between the Col-0 and C24 accessions, which also divides a large number of Arabidopsis accessions carrying either the Col-0 or the C24 allele. The polymorphism consists of two stretches of 2.1 and 3.8 kb, which are both absent from the promotor region of Col-0 FUM2. By analysing mutants as well as mapping and natural populations with contrasting FUM2 alleles, the promotor insertion was linked to reduced FUM2 mRNA expression, reduced fumarase activity and reduced fumarate/malate ratio in leaves. In a large population of 174 natural accessions, the polymorphism was also found to be associated with the fumarate/malate ratio, malate and fumarate levels, and with dry weight at 15 days after sowing (DAS). The association with biomass production was confirmed in an even larger (251) accession population for dry weight at 22 DAS. The dominant Col-0 allele that results in increased fumarate/malate ratios and enhanced biomass production is predominantly found in central/eastern European accessions, whereas the C24 type allele is prevalent on the Iberian Peninsula, west of the Rhine and in the British Isles. Our findings support the role of FUM2 in diurnal carbon storage, and point to a growth advantage of accessions carrying the FUM2 Col-0 allele.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Polimorfismo Genético/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia
17.
J Exp Bot ; 68(11): 2919-2931, 2017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28449076

RESUMO

Primary root growth in Arabidopsis and a number of other species has previously been shown to be remarkably sensitive to the presence of external glutamate, with glutamate signalling eliciting major changes in root architecture. Using two recombinant inbred lines from reciprocal crosses between Arabidopsis accessions C24 and Col-0, we have identified one large-effect quantitative trait locus (QTL), GluS1, and two minor QTLs, GluS2 and GluS3, which together accounted for 41% of the phenotypic variance in glutamate sensitivity. The presence of the GluS1 locus on chromosome 3 was confirmed using a set of C24/Col-0 isogenic lines. GluS1 was mapped to an interval between genes At3g44830-At3g46880. When QTL mapping was repeated under a range of environmental conditions, including temperature, shading and nitrate supply, a strong genotype-by-environment interaction in the controls for the glutamate response was identified. Major differences in the loci controlling this trait were found under different environmental conditions. Here we present evidence for the existence of loci on chromosomes 1 and 5 epistatically controlling the response of the GluS1 locus to variations in ambient temperature, between 20°C and 26°C. In addition, a locus on the long arm of chromosome 1 was found to play a major role in controlling the ability of external nitrate signals to antagonize the glutamate effect. We conclude that there are multiple loci controlling natural variation in glutamate sensitivity in Arabidopsis roots and that epistatic interactions play an important role in modulating glutamate sensitivity in response to changes in environmental conditions.


Assuntos
Arabidopsis/efeitos dos fármacos , Interação Gene-Ambiente , Ácido Glutâmico/farmacologia , Raízes de Plantas/efeitos dos fármacos , Locos de Características Quantitativas , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Mapeamento Cromossômico , Cromossomos de Plantas , Epigênese Genética , Variação Genética , Genótipo , Nitratos/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Temperatura
18.
J Exp Bot ; 68(7): 1655-1667, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28338798

RESUMO

To gain insight into genetic factors controlling seed metabolic composition and its relationship to major seed properties, an Arabidopsis recombinant inbred line (RIL) population, derived from accessions Col-0 and C24, was studied using an MS-based metabolic profiling approach. Relative intensities of 311 polar primary metabolites were used to identify associated genomic loci and to elucidate their interactions by quantitative trait locus (QTL) mapping. A total of 786 metabolic QTLs (mQTLs) were unequally distributed across the genome, forming several hotspots. For the branched-chain amino acid leucine, mQTLs and candidate genes were elucidated in detail. Correlation studies displayed links between metabolite levels, seed protein content, and seed weight. Principal component analysis revealed a clustering of samples, with PC1 mapping to a region on the short arm of chromosome IV. The overlap of this region with mQTL hotspots indicates the presence of a potential master regulatory locus of seed metabolism. As a result of database queries, a series of candidate regulatory genes, including bZIP10, were identified within this region. Depending on the search conditions, metabolic pathway-derived candidate genes for 40-61% of tested mQTLs could be determined, providing an extensive basis for further identification and characterization of hitherto unknown genes causal for natural variation of Arabidopsis seed metabolism.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Mapeamento Cromossômico , Metaboloma , Locos de Características Quantitativas , Espectrometria de Massas , Sementes/genética , Sementes/metabolismo
19.
Plant Cell ; 26(12): 4636-55, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25501589

RESUMO

Significantly improved crop varieties are urgently needed to feed the rapidly growing human population under changing climates. While genome sequence information and excellent genomic tools are in place for major crop species, the systematic quantification of phenotypic traits or components thereof in a high-throughput fashion remains an enormous challenge. In order to help bridge the genotype to phenotype gap, we developed a comprehensive framework for high-throughput phenotype data analysis in plants, which enables the extraction of an extensive list of phenotypic traits from nondestructive plant imaging over time. As a proof of concept, we investigated the phenotypic components of the drought responses of 18 different barley (Hordeum vulgare) cultivars during vegetative growth. We analyzed dynamic properties of trait expression over growth time based on 54 representative phenotypic features. The data are highly valuable to understand plant development and to further quantify growth and crop performance features. We tested various growth models to predict plant biomass accumulation and identified several relevant parameters that support biological interpretation of plant growth and stress tolerance. These image-based traits and model-derived parameters are promising for subsequent genetic mapping to uncover the genetic basis of complex agronomic traits. Taken together, we anticipate that the analytical framework and analysis results presented here will be useful to advance our views of phenotypic trait components underlying plant development and their responses to environmental cues.


Assuntos
Produtos Agrícolas/crescimento & desenvolvimento , Hordeum/crescimento & desenvolvimento , Processamento de Imagem Assistida por Computador/métodos , Estresse Fisiológico , Água/metabolismo , Análise por Conglomerados , Produtos Agrícolas/anatomia & histologia , Produtos Agrícolas/metabolismo , Secas , Estudos de Associação Genética , Hordeum/anatomia & histologia , Hordeum/metabolismo , Modelos Biológicos , Fenótipo
20.
Plant J ; 84(6): 1059-72, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26473514

RESUMO

Bsister MADS-box genes play key roles in female reproductive organ and seed development throughout seed plants. This view is supported by their high conservation in terms of sequence, expression and function. In grasses, there are three subclades of Bsister genes: the OsMADS29-, the OsMADS30- and the OsMADS31-like genes. Here, we report on the evolution of the OsMADS30-like genes. Our analyses indicate that these genes evolved under relaxed purifying selection and are rather weakly expressed. OsMADS30, the representative of the OsMADS30-like genes from rice (Oryza sativa), shows strong sequence deviations in its 3' region when compared to orthologues from other grass species. We show that this is due to a 2.4-kbp insertion, possibly of a hitherto unknown helitron, which confers a heterologous C-terminal domain to OsMADS30. This putative helitron is not present in the OsMADS30 orthologues from closely related wild rice species, pointing to a relatively recent insertion event. Unlike other Bsister mutants O. sativa plants carrying a T-DNA insertion in the OsMADS30 gene do not show aberrant seed phenotypes, indicating that OsMADS30 likely does not have a canonical 'Bsister function'. However, imaging-based phenotyping of the T-DNA carrying plants revealed alterations in shoot size and architecture. We hypothesize that sequence deviations that accumulated during a period of relaxed selection in the gene lineage that led to OsMADS30 and the alteration of the C-terminal domain might have been a precondition for a potential neo-functionalization of OsMADS30 in O. sativa.


Assuntos
Regulação da Expressão Gênica de Plantas/fisiologia , Oryza/genética , Filogenia , Proteínas de Plantas/metabolismo , Sequência de Bases , Sequências Repetitivas Dispersas , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA