Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 590(7844): 89-96, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33536653

RESUMO

Reaction optimization is fundamental to synthetic chemistry, from optimizing the yield of industrial processes to selecting conditions for the preparation of medicinal candidates1. Likewise, parameter optimization is omnipresent in artificial intelligence, from tuning virtual personal assistants to training social media and product recommendation systems2. Owing to the high cost associated with carrying out experiments, scientists in both areas set numerous (hyper)parameter values by evaluating only a small subset of the possible configurations. Bayesian optimization, an iterative response surface-based global optimization algorithm, has demonstrated exceptional performance in the tuning of machine learning models3. Bayesian optimization has also been recently applied in chemistry4-9; however, its application and assessment for reaction optimization in synthetic chemistry has not been investigated. Here we report the development of a framework for Bayesian reaction optimization and an open-source software tool that allows chemists to easily integrate state-of-the-art optimization algorithms into their everyday laboratory practices. We collect a large benchmark dataset for a palladium-catalysed direct arylation reaction, perform a systematic study of Bayesian optimization compared to human decision-making in reaction optimization, and apply Bayesian optimization to two real-world optimization efforts (Mitsunobu and deoxyfluorination reactions). Benchmarking is accomplished via an online game that links the decisions made by expert chemists and engineers to real experiments run in the laboratory. Our findings demonstrate that Bayesian optimization outperforms human decisionmaking in both average optimization efficiency (number of experiments) and consistency (variance of outcome against initially available data). Overall, our studies suggest that adopting Bayesian optimization methods into everyday laboratory practices could facilitate more efficient synthesis of functional chemicals by enabling better-informed, data-driven decisions about which experiments to run.


Assuntos
Teorema de Bayes , Técnicas de Química Sintética/métodos , Algoritmos , Conjuntos de Dados como Assunto , Tomada de Decisões , Halogenação , Paládio/química , Reprodutibilidade dos Testes
2.
Tetrahedron Chem ; 12022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35441154

RESUMO

Electrochemistry is quickly entering the mainstream of synthetic organic chemistry. The diversity of new transformations enabled by electrochemistry is to a large extent a consequence of the unique features and reaction parameters in electrochemical systems including redox mediators, applied potential, electrode material, and cell construction. While offering chemists new means to control reactivity and selectivity, these additional features also increase the dimensionalities of a reaction system and complicate its optimization. This challenge, however, has spawned increasing adoption of data science tools to aid reaction discovery as well as development of high-throughput screening platforms that facilitate the generation of high quality datasets. In this Perspective, we provide an overview of recent advances in data-science driven electrochemistry with an emphasis on the opportunities and challenges facing this growing subdiscipline.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA