RESUMO
Skin-associated bacteria are known to inhibit infection by the fungal pathogen Batrachochytrium dendrobatidis (Bd) in amphibians. It has also been postulated that skin-associated bacterial community is related to Bd infection intensity. However, our understanding of host microbial dynamics and their importance in regulating Bd intensity is limited. We analyzed Bd infection and skin-associated bacteria from two amphibian species, the salamander Ambystoma rivulare and the frog Lithobates spectabilis that co-occurred in a tropical high-altitude site in central Mexico. Sixty-three percent of sampled salamander individuals and 80% of frog individuals tested positive for Bd. Overall, we registered 622 skin-associated bacterial genera, from which 73 are known to have Bd inhibitory effects. These inhibitory taxa represented a relative abundance of 50% in relation to total relative bacterial abundance. Our results indicated that, although sharing some bacterial taxa, bacterial community from the skin of both species was different in taxonomic composition and in relative abundance. Pseudomonas spp. and Stenotrophomonas spp. were among the five most abundant bacterial taxa of both species. Both bacterial taxa inhibit Bd infection. We detected that bacterial richness and relative abundance of inhibitory Bd bacteria were negatively related to intensity of Bd infection independent of species and seasons. Despite the high Bd prevalence in both host species, no dead or sick individuals were registered during field surveys. The relatively low levels of Bd load apparently do not compromise survival of host species. Therefore, our results suggested that individuals analyzed were able to survive and thrive under a dynamic relation with enzootic infections of Bd and their microbiota.
Assuntos
Quitridiomicetos , Microbiota , Animais , Bactérias/genética , Batrachochytrium , Humanos , Ranidae , PeleRESUMO
The Crotalus intermedius group is a clade of rattlesnakes consisting of several species adapted to a high elevation habitat, primarily in México. Crotalus tancitarensis was previously classified as C. intermedius, until individuals occurring on Cerro Tancítaro in Michoacán, México, were reevaluated and classified as a new species (C. tancitarensis) based on scale pattern and geographic location. This study aimed to characterize the venom of C. tancitarensis and compare the venom profile to those of other species within the Crotalus intermedius group using gel electrophoresis, biochemical assays, reverse-phase high performance liquid chromatography, mass spectrometry, and lethal toxicity (LD50) assays. Results show that the venom profiles of species within the Crotalus intermedius group are similar, but with distinct differences in phospholipase A2 (PLA2), metalloproteinase PI (SVMP PI), and kallikrein-like serine proteinase (SVSP) activity and relative abundance. Proteomic analysis indicated that the highland forms produce venoms with 50-60 protein isoforms and a composition typical of type I rattlesnake venoms (abundant SVMPs, lack of presynaptic PLA2-based neurotoxins), as well as a diversity of typical Crotalus venom components such as serine proteinases, PLA2s, C-type lectins, and less abundant toxins (LAAOs, CRiSPs, etc.). The overall venom profile of C. tancitarensis appears most similar to C. transversus, which is consistent with a previous mitochondrial DNA analysis of the Crotalus intermedius group. These rattlesnakes of the Mexican highlands represent a radiation of high elevation specialists, and in spite of divergence of species in these Sky Island habitats, venom composition of species analyzed here has remained relatively conserved. The majority of protein family isoforms are conserved in all members of the clade, and as seen in other more broadly distributed rattlesnake species, differences in their venoms are largely due to relative concentrations of specific components.
Assuntos
Venenos de Crotalídeos , Crotalus , Humanos , Animais , México , Crotalus/genética , Proteômica , Venenos de Crotalídeos/química , Metaloproteases/metabolismo , Fosfolipases A2/químicaRESUMO
The niche comprises the set of abiotic and biotic environmental conditions in which a species can live. Consequently, those species that present broader niches are expected to be more tolerant to changes in climatic variations than those species that present reduced niches. In this study, we estimate the amplitude of the climatic niche of fourteen species of rattlesnakes of the genus Crotalus to evaluate whether those species that present broader niches are less susceptible to the loss of climatically suitable zones due to the projected climate change for the time period 2021-2040. Our results suggest that for the species under study, the breadth of the niche is not a factor that determines their vulnerability to climatic variations. However, 71.4% of the species will experience increasingly inadequate habitat conditions, mainly due to the increase in temperature and the contribution that this variable has in the creation of climatically suitable zones for most of these species.
Assuntos
Mudança Climática , Crotalus , Animais , Ecossistema , América do Norte , TemperaturaRESUMO
We explored the impact of forest conversion to agricultural mosaic on anuran, lizard, snake, and turtle assemblages of Neotropical dry forests. Over 2 years, we sampled 6 small watersheds on the west coast of Mexico, 3 conserved and 3 disturbed. The disturbed watersheds were characterized by a mosaic of pastures and cultivated fields (corn, beans, squash) intermingled with patches of different successional stages of dry forest. In each watershed, we conducted 11 diurnal and nocturnal time-constrained searches in 10 randomly established plots. We considered vulnerability traits of species in relation to habitat modification. Eighteen anuran, 18 lizard, 23 snake, and 3 turtle species were recorded. Thirty-six species (58%) occurred in both forest conditions, and 14 (22%) and 12 species (19%) occurred only in the conserved and disturbed sites, respectively. Assemblages responded differently to disturbance. Species richness, diversity, and abundance of lizards were higher in disturbed forests. Anuran diversity and species richness were lower in disturbed forest but abundance was similar in both forest conditions. Diversity, richness, and abundance of turtles were lower in disturbed forest. The structure and composition of snake assemblages did not differ between forest conditions. We considered species disturbance sensitive if their abundance was significantly less in disturbed areas. Four anuran (22%), 2 lizard (11%), and 3 turtle (100%) species were sensitive to disturbance. No snake species was sensitive. The decline in abundance of disturbance-sensitive species was associated with the reduction of forest canopy cover, woody stem cover, roots, and litter-layer ground cover. Anuran species with small body size and direct embryonic development were especially sensitive to forest disturbance. An important goal for the conservation of herpetofauna should be the determination of species traits associated with extinction or persistence in agricultural mosaics.
Assuntos
Agricultura/métodos , Anfíbios/fisiologia , Biodiversidade , Conservação dos Recursos Naturais/métodos , Ecossistema , Répteis/fisiologia , Árvores , Animais , Conservação dos Recursos Naturais/estatística & dados numéricos , México , Dinâmica Populacional , Estatísticas não ParamétricasRESUMO
Identification of early warning signals previous to the occurrence of population decline or extinction is a major challenge for the conservation of animal species. Prevalence of morphological abnormalities in a population can be one of these signals. We registered morphological abnormalities in the salamander Ambystoma ordinarium. We also evaluated the relation between habitat quality and the prevalence of abnormalities in this species. We used scores from rapid bioassessment protocols (RBPs) to assess the habitat quality of streams inhabited by A. ordinarium. A preliminary survey indicated that of 29 streams where this species has been historically registered, 13 might have few or no A. ordinarium. The association between habitat quality and the incidence of morphological abnormalities was evaluated in these 16 streams. Of 502 sampled individuals, 224 (44.62%) had at least one body abnormality. Of the 224 individuals with body abnormalities, 84 (37.5%) presented more than one abnormality. Of a total of 5,522 evaluated morphological characters, 344 (6.74%) were abnormal. Partial loss of gills and missing digits were the most frequent abnormalities. Results of a binomial logistic regression indicated that the probability of a character of an individual to be abnormal was significantly associated with habitat quality; as the levels of the quality of the habitat increased, the prevalence of morphological abnormalities decreased. These results suggest that RBPs are a quick and useful method for assessing the habitat quality of streams inhabited by A. ordinarium. Given that RBPs provide rapid and cost-effective assessments of the ecological health of aquatic ecosystems, it will be important to test if the RBPs protocols can be used to rapidly assess habitat quality for other species of stream amphibians. The negative association between habitat quality and the prevalence of morpohological abnormalities that we found indicates that habitat condition plays an important role in the high number of abnormalities registered in A. ordinarium. Therefore, our results suggest that one of the several negative effects of habitat degradation on amphibians is an increase in the frequency of morphological abnormalities with marked consequences for the survival and general fitness of aquatic amphibians.
Assuntos
Ambystoma/anormalidades , Ecossistema , Brânquias/anormalidades , Deformidades Congênitas dos Membros/veterinária , Animais , Conservação dos Recursos Naturais , Incidência , Deformidades Congênitas dos Membros/epidemiologiaRESUMO
Members of the Crotalus triseriatus species group of montane rattlesnakes are widely distributed across the highlands of Mexico and southwestern USA. Although five species are currently recognized within the group, species limits remain to be tested. Genetic studies suggest that species may be paraphyletic and that at least one cryptic species may be present. We generate 3,346 base pairs of DNA sequence data from seven nuclear loci to test competing models of species delimitation in the C. triseriatus group using Bayes factor delimitation. We also examine museum specimens from the Trans-Mexican Volcanic Belt for evidence of cryptic species. We find strong support for a nine-species model and genetic and morphological evidence for recognizing two new species within the group, which we formally describe here. Our results suggest that the current taxonomy of the C. triseriatus species group does not reflect evolutionary history. We suggest several conservative taxonomic changes to the group, but future studies are needed to better clarify relationships among species and examine genetic patterns and structure within wide-ranging lineages.
Assuntos
Crotalus/classificação , Distribuição Animal , Estruturas Animais/anatomia & histologia , Estruturas Animais/crescimento & desenvolvimento , Animais , Tamanho Corporal , Crotalus/anatomia & histologia , Crotalus/crescimento & desenvolvimento , DNA Mitocondrial/genética , Ecossistema , Feminino , Masculino , Dados de Sequência Molecular , Tipagem de Sequências Multilocus , FilogeniaRESUMO
ResumenLa perturbación del hábitat puede modificar los microhábitats y por lo tanto tener un marcado efecto en la abundancia y distribución de especies de anuros, en particular en aquellas asociadas a microhábitats específicos. En el presente estudio evaluamos cambios en el uso del microhábitat de dos especies sintópicas de ranas arborícolas, Agalychnis dacnicolor y Smilisca fodiens a lo largo de un gradiente sucesional del bosque tropical seco (BTS). Nuestra hipótesis fue que debido a que estas dos especies son generalistas de hábitat, modificarían el uso del microhábitat en respuesta a la sucesión secundaria del BTS y la temporada climática (TC). Aunque ambas especies se registraron en los bosques secundarios y en los bosques maduros, A. dacnicolor prefirió el bosque maduro mientras que S. fodiens prefirió los lugares perturbados. Ninguna de las dos especies presentaron diferencias en biomasa entre los estadios sucesionales (ES), ni entre temporadas climáticas. A diferencia de S. fodiens la rana A. dacnicolor presentó mayores tallas durante la temporada de lluvias. La temperatura corporal de ambas especies varió entre ES y temporada climática. S. fodiens presentó una temperatura mas constante entre individuos en los pastizales, mientras que A. dacnicolor en los bosques maduros. Las variables ambientales y estructurales del hábitat que influyeron en la presencia de ambas especies dentro de los diferentes ES fueron la temperatura del sustrato, altura del árbol o arbusto donde se encontraba perchando el individuo y los porcentajes de cobertura de hojarasca, herbáceas, arbustos, árboles y suelo desnudo. Las variables que mejor explicaron la biomasa, la longitud hocico-cloaca (LHC) y la temperatura corporal de S. fodiens fueron las ramas secas y la temperatura del sustrato y en A. dacnicolor la biomasa estuvo mejor explicada por las herbáceas, LHC, la altura del árbol o arbusto donde la rana perchaba, y la temperatura corporal por la temperatura del sustrato. Ambas especies usaron de manera diferencial las variables ambientales y estructurales del microhábitat conforme los ES aumentaron en edad. Las variables que separaron a las especies fueron la altura del refugio o percha y el porcentaje de árboles en los diferentes ES. A. dacnicolor mantuvo preferencia por los estratos mas bajos de la vegetación, mientras que S. fodiens mostró una amplia plasticidad en el uso del microhábitat, en particular modificó el uso en la altura del refugio o percha. Nuestros resultados sugieren que aunque ambas especies han sido consideradas generalistas de hábitat, en los paisajes antropizados A. dacnicolor es una especie especialista del microhábitat y S. fodiens es una especie con mayor plasticidad ecológica en el uso del microhábitat. Estas diferencias en el uso del microhábitat en respuesta a la perturbación del hábitat pueden ayudar a explicar el éxito de las especies en estos nuevos paisajes, así como la importancia de los bosques secundarios en distintas etapas de sucesión para mantener microhábitats adecuados para la permanencia de las especies en los paisajes antropizados.
AbstractHabitat disturbance can modify microhabitats and therefore have a significant effect on the abundance and distribution of anurans species, particularly those associated to specific microhabitats. In this study we evaluated changes in the use of microhabitat by two syntopic species of tree frogs, Agalychnis dacnicolor and Smilisca fodiens along a successional gradient of Tropical Dry Forest in the region of the Biosphere Reserve of Chamela-Cuixmala at the coast of Jalisco, Mexico. We hypothesized that because these two species are habitat generalists, microhabitat use would change in response to secondary forest succession and to the climatic season of the year. Although both species were registered in both secondary and mature forests, A. dacnicolor was associated to mature forest, whereas S. fodiens was more associated to disturbed sites. Neither species showed differences in biomass among successional stages (ES) or between climatic seasons. Unlike S. fodiens, A. dacnicolor presented larger sizes during the rainy season. Body temperature of both species varied between ES and climatic season. S. fodiens presented a more constant temperature among individuals in pastures, while A. dacnicolor in mature forests. Environmental and structural habitat variables that influenced the presence of both species in ES were substrate temperature, height of tree or shrub where the frog was perching and percentage cover of litter, grasses, shrubs, trees and bare soil. The variables that best explained biomass, snout-vent length (LHC) and body temperature of S. fodiens were cover of dry branches and substrate temperature, whereas biomass of A. dacnicolor was better explained by cover of herbs, LHC, height of the tree or shrub where the frog was perching, body temperature and the substrate temperature. Both species used differentially environmental and structural variables of microhabitats along the gradient of initial to late ES. The variables that separated the species were the height of the shelter or perch and the percentage of trees in different ES. Whereas A. dacnicolor was more associated to the lowest strata of vegetation, S. fodiens showed plasticity in microhabitat use, especially in height of shelter or perch. Our results suggested that even when both species are considered habitat generalists, in anthropic landscapes, A. dacnicolor is specialist in microhabitat use, whereas S. fodiens is a species with greater ecological plasticity in microhabitat use. These differences in microhabitat use in response to habitat disturbance may help explain the success of these species in these new landscapes, as well as the importance of secondary forests in different stages of succession to maintain adequate microhabitats for the permanence of species in anthropogenic landscapes.