Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Antimicrob Agents Chemother ; 66(3): e0221221, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35099272

RESUMO

Nontuberculous mycobacterial pulmonary disease (NTM-PD) is a potentially fatal infectious disease requiring long treatment duration with multiple antibiotics and against which there is no reliable cure. Among the factors that have hampered the development of adequate drug regimens is the lack of an animal model that reproduces the NTM lung pathology required for studying antibiotic penetration and efficacy. Given the documented similarities between tuberculosis and NTM immunopathology in patients, we first determined that the rabbit model of active tuberculosis reproduces key features of human NTM-PD and provides an acceptable surrogate model to study lesion penetration. We focused on clarithromycin, a macrolide and pillar of NTM-PD treatment, and explored the underlying causes of the disconnect between its favorable potency and pharmacokinetics and inconsistent clinical outcome. To quantify pharmacokinetic-pharmacodynamic target attainment at the site of disease, we developed a translational model describing clarithromycin distribution from plasma to lung lesions, including the spatial quantitation of clarithromycin and azithromycin in mycobacterial lesions of two patients on long-term macrolide therapy. Through clinical simulations, we visualized the coverage of clarithromycin in plasma and four disease compartments, revealing heterogeneous bacteriostatic and bactericidal target attainment depending on the compartment and the corresponding potency against nontuberculous mycobacteria in clinically relevant assays. Overall, clarithromycin's favorable tissue penetration and lack of bactericidal activity indicated that its clinical activity is limited by pharmacodynamic, rather than pharmacokinetic, factors. Our results pave the way toward the simulation of lesion pharmacokinetic-pharmacodynamic coverage by multidrug combinations to enable the prioritization of promising regimens for clinical trials.


Assuntos
Pneumopatias , Infecções por Mycobacterium não Tuberculosas , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Humanos , Pneumopatias/tratamento farmacológico , Pneumopatias/microbiologia , Macrolídeos/farmacologia , Macrolídeos/uso terapêutico , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Micobactérias não Tuberculosas , Coelhos
2.
Antimicrob Agents Chemother ; 65(8): e0067621, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34001512

RESUMO

New, more-effective drugs for the treatment of lung disease caused by nontuberculous mycobacteria (NTM) are needed. Among NTM opportunistic pathogens, Mycobacterium abscessus is the most difficult to cure and intrinsically multidrug resistant. In a whole-cell screen of a compound collection active against Mycobacterium tuberculosis, we previously identified the piperidine-4-carboxamide (P4C) MMV688844 (844) as a hit against M. abscessus. Here, we identified a more potent analog of 844 and showed that both the parent and improved analog retain activity against strains representing all three subspecies of the M. abscessus complex. Furthermore, P4Cs showed bactericidal and antibiofilm activity. Spontaneous resistance against the P4Cs emerged at a frequency of 10-8/CFU and mapped to gyrA and gyrB encoding the subunits of DNA gyrase. Biochemical studies with recombinant M. abscessus DNA gyrase showed that P4Cs inhibit the wild-type enzyme but not the P4C-resistant mutant. P4C-resistant strains showed limited cross-resistance to the fluoroquinolone moxifloxacin, which is in clinical use for the treatment of macrolide-resistant M. abscessus disease, and no cross-resistance to the benzimidazole SPR719, a novel DNA gyrase inhibitor in clinical development for the treatment of mycobacterial diseases. Analyses of P4Cs in recA promoter-based DNA damage reporter strains showed induction of recA promoter activity in the wild type but not in the P4C-resistant mutant background. This indicates that P4Cs, similar to fluoroquinolones, cause DNA gyrase-mediated DNA damage. Together, our results show that P4Cs present a novel class of mycobacterial DNA gyrase inhibitors with attractive antimicrobial activities against the M. abscessus complex.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Antibacterianos/farmacologia , DNA Girase/genética , Humanos , Testes de Sensibilidade Microbiana , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Mycobacterium abscessus/genética , Micobactérias não Tuberculosas , Piperidinas/farmacologia
3.
Malays J Med Sci ; 21(3): 31-7, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-25246833

RESUMO

BACKGROUND: Humoral and cellular immune responses are associated with protection against extracellular and intracellular pathogens, respectively. In the present study, we evaluated the effect of receiving human secretory immunoglobulin A (hsIgA) on the histopathology of the lungs of mice challenged with virulent Mycobacterium tuberculosis. METHODS: The hsIgA was purified from human colostrum and administered to Balb/c mice by the intranasal route prior to infection with M. tuberculosis or in a pre-incubated formulation with mycobacteria, with the principal aim to study its effect on qualitative pulmonary histopathology. RESULTS: The intranasal administration of hsIgA and the pre-incubation of mycobacteria with this preparation was associated with the presence of organised granulomas with signs of immune activation and histological features related to efficient disease control. This effect was highly evident during the late stage of infection (60 days), as demonstrated by numerous organised granulomas with numerous activated macrophages in the lungs of treated mice. CONCLUSION: The administration of hsIgA to mice before intratracheal infection with M. tuberculosis or the pre-incubation of the bacteria with the antibody formulation induced the formation of well-organised granulomas and inflammatory lesions in lungs compared with non-treated animals which correlates with the protective effect already demonstrated by these antibody formulations.

4.
Hum Vaccin Immunother ; 20(1): 2303226, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38251677

RESUMO

Immunoglobulin A (IgA) is the most abundant antibody (Ab) in human mucosae, with secretory form (sIgA) being dominant and uniquely stable. sIgA is challenging to produce recombinantly but is naturally found in human milk, which could be considered a global resource for this biologic, justifying its development as a mucosal therapeutic. Presently, SARS-CoV-2 was utilized as a model mucosal pathogen, and methods were developed to efficiently extract human milk sIgA from donors who were naïve to SARS-CoV-2 or had recovered from infection that elicited high-titer anti-SARS-CoV-2 Spike sIgA in their milk (pooled to make LCTG-002). Mass spectrometry determined that proteins with a relative abundance of 1% or greater were all associated with sIgA. Western blot demonstrated that all batches consisted predominantly of sIgA. Compared to control IgA, LCTG-002 demonstrated significantly higher Spike binding (mean endpoint of 0.87 versus 5.87). LCTG-002 was capable of blocking the Spike receptor-binding domain - angiotensin-converting enzyme 2 (ACE2) interaction with significantly greater potency compared to control (mean LCTG-002 IC50 154ug/mL versus 50% inhibition not achieved for control), and exhibited significant neutralization activity against Spike-pseudotyped virus infection (mean LCTG-002 IC50 49.8ug/mL versus 114.5ug/mL for control). LCTG-002 was tested for its capacity to reduce viral lung burden in K18+hACE2 transgenic mice inoculated with SARS-CoV-2. LCTG-002 significantly reduced SARS-CoV-2 titers compared to control when administered at 0.25 mg/day or 1 mg/day, with a maximum TCID50 reduction of 4.9 logs. This innovative study demonstrates that LCTG-002 is highly pure and efficacious in vivo, supporting further development of milk-derived, polyclonal sIgA therapeutics.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Camundongos , Animais , Leite Humano , Imunoglobulina A Secretora , Modelos Animais de Doenças , Imunoglobulina A , Camundongos Transgênicos , Antivirais
5.
Viruses ; 16(7)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39066320

RESUMO

Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) continues to be a global threat due to its ability to evolve and generate new subvariants, leading to new waves of infection. Additionally, other coronaviruses like Middle East respiratory syndrome coronavirus (MERS-CoV, formerly known as hCoV-EMC), which first emerged in 2012, persist and continue to present a threat of severe illness to humans. The continued identification of novel coronaviruses, coupled with the potential for genetic recombination between different strains, raises the possibility of new coronavirus clades of global concern emerging. As a result, there is a pressing need for pan-CoV therapeutic drugs and vaccines. After the extensive optimization of an HCV protease inhibitor screening hit, a novel 3CLPro inhibitor (MK-7845) was discovered and subsequently profiled. MK-7845 exhibited nanomolar in vitro potency with broad spectrum activity against a panel of clinical SARS-CoV-2 subvariants and MERS-CoV. Furthermore, when administered orally, MK-7845 demonstrated a notable reduction in viral burdens by >6 log orders in the lungs of transgenic mice infected with SARS-CoV-2 (K18-hACE2 mice) and MERS-CoV (K18-hDDP4 mice).


Assuntos
Antivirais , SARS-CoV-2 , Animais , Camundongos , SARS-CoV-2/efeitos dos fármacos , Humanos , Antivirais/farmacologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Tratamento Farmacológico da COVID-19 , Inibidores de Proteases/farmacologia , COVID-19/virologia , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia
6.
J Med Chem ; 67(5): 3935-3958, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38365209

RESUMO

As SARS-CoV-2 continues to circulate, antiviral treatments are needed to complement vaccines. The virus's main protease, 3CLPro, is an attractive drug target in part because it recognizes a unique cleavage site, which features a glutamine residue at the P1 position and is not utilized by human proteases. Herein, we report the invention of MK-7845, a novel reversible covalent 3CLPro inhibitor. While most covalent inhibitors of SARS-CoV-2 3CLPro reported to date contain an amide as a Gln mimic at P1, MK-7845 bears a difluorobutyl substituent at this position. SAR analysis and X-ray crystallographic studies indicate that this group interacts with His163, the same residue that forms a hydrogen bond with the amide substituents typically found at P1. In addition to promising in vivo efficacy and an acceptable projected human dose with unboosted pharmacokinetics, MK-7845 exhibits favorable properties for both solubility and absorption that may be attributable to the unusual difluorobutyl substituent.


Assuntos
COVID-19 , Glutamina , Humanos , Glutamina/química , SARS-CoV-2 , Cisteína Endopeptidases/química , Invenções , Inibidores de Proteases/farmacologia , Amidas , Antivirais/farmacologia , Antivirais/química
7.
BMC Immunol ; 14 Suppl 1: S5, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23458635

RESUMO

Recombinant Mycobacterium bovis bacille Calmette-Guèrin (rBCG) expressing three T cell epitopes of Mycobacterium tuberculosis (MTB) Ag85B antigen (P1, P2, P3) fused to the Mtb8.4 protein (rBCG018) or a combination of these antigens fused to B cell epitopes from ESAT-6, CFP-10 and MTP40 proteins (rBCG032) were used to immunize Balb/c mice. Total IgG responses were determined against Mtb8.4 antigen and ESAT-6 and CFP-10 B cell epitopes after immunization with rBCG032. Mice immunized with rBCG032 showed a significant increase in IgG1 and IgG2a antibodies against ESAT-6 and MTP40 (P1) B cell epitopes and IgG3 against both P1 and P2 B cell epitopes of MPT40. Splenocytes from mice immunized with rBCG018 proliferated against Ag85B P2 and P3 T cell epitopes and Mtb8.4 protein whereas those from mice-immunized with rBCG032 responded against all Ag85B epitopes and the ESAT-6 B cell epitope. CD4⁺ and CD8⁺ lymphocytes from mice immunized with rBCG018 produced primarily Th1 type cytokines in response to the T cell epitopes. Similar pattern of recognition against the T cell epitopes were obtained with rBCG032 with the additional recognition of ESAT-6, CFP-10 and one of the MTP40 B cell epitopes with the same pattern of cytokines. This study demonstrates that rBCG constructs expressing either T or T and B cell epitopes of MTB induced appropriate immunogenicity against MTB.


Assuntos
Antígenos de Bactérias/imunologia , Vacina BCG/imunologia , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Mycobacterium tuberculosis/imunologia , Aciltransferases/imunologia , Aciltransferases/metabolismo , Adjuvantes Imunológicos , Animais , Antígenos de Bactérias/metabolismo , Vacina BCG/genética , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Proliferação de Células , Epitopos de Linfócito B/biossíntese , Epitopos de Linfócito T/biossíntese , Imunoglobulina G/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/metabolismo , Proteínas Recombinantes de Fusão/imunologia , Fosfolipases Tipo C/imunologia , Fosfolipases Tipo C/metabolismo , Vacinação , Vacinas Sintéticas/imunologia
8.
BMC Immunol ; 14 Suppl 1: S3, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23458564

RESUMO

BACKGROUND: Immunoglobulin A is the most abundant isotype in secretions from mucosal surfaces of the gastrointestinal, respiratory and genitourinary tracts and in external secretions such as colostrum, breast milk, tears and saliva. The high concentration of human secretory IgA (hsIgA) in human colostrum strongly suggests that it should play an important role in the passive immune protection against gastrointestinal and respiratory infections. MATERIALS AND METHODS: Human secretory IgA was purified from colostrum. The reactivity of hsIgA against mycobacterial antigens and its protective capacity against mycobacterial infection was evaluated. RESULTS: The passive administration of hsIgA reduces the pneumonic area before challenge with M. tuberculosis. The intratracheal administration of M. tuberculosis preincubated with hsIgA to mice greatly reduced the bacterial load in the lungs and diminished lung tissue injury. CONCLUSIONS: HsIgA purified from colostrum protects against M. tuberculosis infection in an experimental mouse model.


Assuntos
Colostro/imunologia , Imunização Passiva , Imunoglobulina A Secretora/administração & dosagem , Imunoglobulina A Secretora/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculose Pulmonar/prevenção & controle , Animais , Antígenos de Bactérias/imunologia , Carga Bacteriana , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Mycobacterium tuberculosis/fisiologia , Tuberculose Pulmonar/imunologia
9.
bioRxiv ; 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37693438

RESUMO

Immunoglobulin A (IgA) is the most abundant antibody (Ab) in human mucosal compartments including the respiratory tract, with the secretory form of IgA (sIgA) being dominant and uniquely stable in these environments. sIgA is naturally found in human milk, which could be considered a global resource for this biologic, justifying the development of human milk sIgA as a dedicated airway therapeutic for respiratory infections such as SARS-CoV-2. In the present study, methods were therefore developed to efficiently extract human milk sIgA from donors who were either immunologically naïve to SARS-CoV-2 (pooled as a control IgA) or had recovered from a PCR-confirmed SARS-CoV-2 infection that elicited high-titer anti-SARS-CoV-2 Spike sIgA Abs in their milk (pooled together to make LCTG-002). Mass spectrometry determined that proteins with a relative abundance of 1.0% or greater were all associated with sIgA. None of the proteins exhibited statistically significant differences between batches. Western blot demonstrated all batches consisted predominantly of sIgA. Compared to control IgA, LCTG-002 demonstrated significantly higher binding to Spike, and was also capable of blocking the Spike - ACE2 interaction in vitro with 6.3x greater potency compared to control IgA (58% inhibition at ∼240ug/mL). LCTG-002 was then tested in vivo for its capacity to reduce viral burden in the lungs of K18+hACE2 transgenic mice inoculated with SARS-CoV-2. LCTG-002 was demonstrated to significantly reduce SARS-CoV-2 titers in the lungs compared to control IgA when administered at either 250ug/day or 1 mg/day, as measured by TCID50, plaque forming units (PFU), and qRT-PCR, with a maximum reduction of 4.9 logs. This innovative study demonstrates that LCTG-002 is highly pure, efficacious, and well tolerated in vivo, supporting further development of milk-derived, polyclonal sIgA therapeutics against SARS-CoV-2 and other mucosal infections.

10.
ACS Med Chem Lett ; 13(3): 417-427, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35300094

RESUMO

Mycobacterium abscessus causes difficult-to-cure pulmonary infections. The bacterium is resistant to most anti-infective agents, including first line antituberculosis (anti-TB) drugs. MMV688844 (844) is a piperidine-4-carboxamide (P4C) with bactericidal properties against M. abscessus. We recently identified DNA gyrase as the molecular target of 844. Here, we present in silico docking and genetic evidence suggesting that P4Cs display a similar binding mode to DNA gyrase as gepotidacin. Gepotidacin is a member of the Novel Bacterial Topoisomerase Inhibitors (NBTIs), a new class of nonfluoroquinolone DNA gyrase poisons. Thus, our work suggests that P4Cs present a novel structural subclass of NBTI. We describe structure-activity relationship studies of 844 leading to analogues showing increased antibacterial activity. Selected derivatives were tested for their inhibitory activity against recombinant M. abscessus DNA gyrase. Further optimization of the lead structures led to improved stability in mouse plasma and increased oral bioavailability.

11.
ACS Infect Dis ; 7(8): 2492-2507, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34279904

RESUMO

SQ109 is a drug candidate for the treatment of tuberculosis (TB). It is thought to target primarily the protein MmpL3 in Mycobacterium tuberculosis, but it also inhibits the growth of some other bacteria. SQ109 is metabolized by the liver, and it has been proposed that some of its metabolites might be responsible for its activity against TB. Here, we synthesized six potential P450 metabolites of SQ109 and used these as well as 10 other likely metabolites as standards in a mass spectrometry study of M. tuberculosis-infected rabbits treated with SQ109, in addition to testing all 16 putative metabolites for antibacterial activity. We found that there were just two major metabolites in lung tissue: a hydroxy-adamantyl analog of SQ109 and N'-adamantylethylenediamine. Neither of these, or the other potential metabolites tested, inhibited the growth of M. tuberculosis or of M. smegmatis, Bacillus subtilis, or E. coli, making it unlikely that an SQ109 metabolite contributes to its antibacterial activity. In the rabbit TB model, it is thus the gradual accumulation of nonmetabolized SQ109 in tissues to therapeutic levels that leads to good efficacy. Our results also provide new insights into how SQ109 binds to its target MmpL3, based on our mass spectroscopy results which indicate that the charge in SQ109 is primarily localized on the geranyl nitrogen, explaining the very short distance to a key Asp found in the X-ray structure of SQ109 bound to MmpL3.


Assuntos
Mycobacterium tuberculosis , Preparações Farmacêuticas , Tuberculose , Animais , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Escherichia coli , Coelhos , Tuberculose/tratamento farmacológico
12.
Front Microbiol ; 11: 359, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194537

RESUMO

Persistence of infection despite extensive chemotherapy with antibiotics displaying low MICs is a hallmark of lung disease caused by Mycobacterium abscessus (Mab). Thus, the classical MIC assay is a poor predictor of clinical outcome. Discovery of more efficacious antibiotics requires more predictive in vitro potency assays. As a mycobacterium, Mab is an obligate aerobe and a chemo-organo-heterotroph - it requires oxygen and organic carbon sources for growth. However, bacteria growing in patients can encounter micro-environmental conditions that are different from aerated nutrient-rich broth used to grow planktonic cultures for MIC assays. These in vivo conditions may include oxygen and nutrient limitation which should arrest growth. Furthermore, Mab was shown to grow as biofilms in vivo. Here, we show Mab Bamboo, a clinical isolate we use for Mab drug discovery, can survive oxygen deprivation and nutrient starvation for extended periods of time in non-replicating states and developed an in vitro model where the bacterium grows as biofilm. Using these culture models, we show that non-replicating or biofilm-growing bacteria display tolerance to clinically used anti-Mab antibiotics, consistent with the observed persistence of infection in patients. To demonstrate the utility of the developed "persister" assays for drug discovery, we determined the effect of novel agents targeting membrane functions against these physiological forms of the bacterium and find that these compounds show "anti-persister" activity. In conclusion, we developed in vitro "persister" assays to fill an assay gap in Mab drug discovery compound progression and to enable identification of novel lead compounds showing "anti-persister" activity.

13.
Int J Radiat Biol ; 82(5): 323-9, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16782649

RESUMO

PURPOSE: The aim of this work is to investigate the usefulness of a modified protocol of the SOS Chromotest to detect antigenotoxicity activities against gamma-rays of plant extracts with proven antioxidant activity, and to elucidate the antigenotoxic mechanisms involved in radioprotection using this system. MATERIALS AND METHODS: The methodology developed was assayed with amifostine, the most studied radioprotector, and with Phyllanthus orbicularis HBK, Cymbopogon citratus (DC) Stapf and Pinus caribaea Morelet extracts, using pre- and post-treatment procedures. RESULTS: The P. caribaea and C. citratus extracts were antigenotoxic against gamma-rays when the cells were pre-treated with both extracts, suggesting a possible antigenotoxic action through a free radical scavenging mechanisms. Amifostine and the P. orbicularis extract were also antigenotoxic under pre- and post-treatment conditions, indicating that several antimutagenic components of this plant extract may also operate by some intracellular mechanism, unlike its antioxidant activity. CONCLUSIONS: The results have demonstrated the usefulness of the modified SOS Chromotest assay in the screening of phytochemical radioprotectors as well as in the study of their antimutagenic mechanisms.


Assuntos
Escherichia coli/efeitos dos fármacos , Escherichia coli/efeitos da radiação , Testes de Mutagenicidade/métodos , Extratos Vegetais/administração & dosagem , Plantas Medicinais/química , Resposta SOS em Genética/efeitos dos fármacos , Resposta SOS em Genética/efeitos da radiação , DNA Bacteriano/genética , DNA Bacteriano/efeitos da radiação , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Avaliação Pré-Clínica de Medicamentos , Escherichia coli/genética , Fitoterapia/métodos , Doses de Radiação , Protetores contra Radiação/administração & dosagem
14.
Tuberculosis (Edinb) ; 101: 44-48, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27865396

RESUMO

Tuberculosis (TB) remains an important cause of mortality and morbidity. The TB vaccine, BCG, is not fully protective against the adult form of the disease and is unable to prevent its transmission although it is still useful against severe childhood TB. Hence, the search for new vaccines is of great interest. In a previous study, we have shown that proteoliposomes obtained from Mycobacterium smegmatis (PLMs) induced cross reactive humoral and cellular response against Mycobacterium tuberculosis (Mtb) antigens. With the objective to evaluate the protective capability of PLMs, a murine model of progressive pulmonary TB was used. Animals immunized with PLMs with and without alum (PLMs/PLMsAL respectively) showed protection compared to non-immunized animals. Mice immunized with PLMsAL induced similar protection as that of BCG. Animals immunized with BCG, PLMs and PLMsAL showed a significant decrease in tissue damage (percentage of pneumonic area/lung) compared to non-immunized animals, with a more prominent effect in BCG vaccinated mice. The protective effect of the administration of PLMs in mice supports its future evaluation as experimental vaccine candidate against Mtb.


Assuntos
Mycobacterium smegmatis/imunologia , Proteolipídeos/imunologia , Vacinas contra a Tuberculose , Tuberculose Pulmonar/prevenção & controle , Adjuvantes Imunológicos , Compostos de Alúmen , Animais , Vacina BCG , Carga Bacteriana , Modelos Animais de Doenças , Progressão da Doença , Masculino , Camundongos Endogâmicos BALB C , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/isolamento & purificação , Pneumonia Bacteriana/microbiologia , Pneumonia Bacteriana/patologia , Pneumonia Bacteriana/prevenção & controle , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/patologia
15.
Hum Vaccin Immunother ; 11(3): 657-61, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25671612

RESUMO

Tuberculosis (TB) is one of the most important causes of mortality and morbidity due to infectious diseases. BCG, the vaccine in use, is not fully protective against TB. In a previous study, we have shown that proteoliposomes (outer membrane extracts), obtained from BCG (PLBCG) were able to induce humoral immune responses against Mycobacterium tuberculosis (Mtb) antigens. With the objective to evaluate the protective capability of PLBCG alone or as a booster with BCG, a murine model of progressive pulmonary TB was used. Animals immunized with PLBCG adjuvanted with alum (PLBCG-Al) showed similar protection to that conferred by BCG. The group immunized with PLBCG-Al as a booster to BCG gave superior protection than BCG as evidenced by a reduction of bacterial load in lungs 2 months after infection with Mtb. Animals immunized with BCG, PLBCG-Al and this formulation as a booster of BCG, showed a significant decrease of tissue damage (percentage of pneumonic area/lung) compared with non-immunized animals. These results demonstrate that immunization with PLBCG-Al alone or as a booster to BCG induce appropriate protection against challenge with Mtb in mice and support the future evaluation of PLBCG as a promising vaccine candidate against Mtb.


Assuntos
Mycobacterium bovis/imunologia , Proteolipídeos/imunologia , Vacinas contra a Tuberculose/imunologia , Tuberculose/prevenção & controle , Adjuvantes Imunológicos/administração & dosagem , Compostos de Alúmen/administração & dosagem , Animais , Carga Bacteriana , Modelos Animais de Doenças , Pulmão/microbiologia , Masculino , Camundongos Endogâmicos BALB C , Mycobacterium bovis/química , Mycobacterium tuberculosis/isolamento & purificação , Proteolipídeos/administração & dosagem , Proteolipídeos/isolamento & purificação , Tuberculose/imunologia , Vacinas contra a Tuberculose/administração & dosagem , Vacinas contra a Tuberculose/isolamento & purificação
16.
Biomed Res Int ; 2014: 273129, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25548767

RESUMO

A more effective vaccine against tuberculosis (TB) is urgently needed. Based on its high genetic homology with Mycobacterium tuberculosis (Mtb), the nonpathogenic mycobacteria, Mycobacterium smegmatis (Ms), could be an attractive source of potential antigens to be included in such a vaccine. We evaluated the capability of lipid-based preparations obtained from Ms to provide a protective response in Balb/c mice after challenge with Mtb H37Rv strain. The intratracheal model of progressive pulmonary TB was used to assess the level of protection in terms of bacterial load as well as the pathological changes in the lungs of immunized Balb/c mice following challenge with Mtb. Mice immunized with the lipid-based preparation from Ms either adjuvanted with Alum (LMs-AL) or nonadjuvanted (LMs) showed significant reductions in bacterial load (P < 0.01) compared to the negative control group (animals immunized with phosphate buffered saline (PBS)). Both lipid formulations showed the same level of protection as Bacille Calmette and Guerin (BCG). Regarding the pathologic changes in the lungs, mice immunized with both lipid formulations showed less pneumonic area when compared with the PBS group (P < 0.01) and showed similar results compared with the BCG group. These findings suggest the potential of LMs as a promising vaccine candidate against TB.


Assuntos
Imunização , Mycobacterium smegmatis/imunologia , Tuberculose Pulmonar/prevenção & controle , Vacinação , Animais , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/uso terapêutico , Vacina BCG/administração & dosagem , Vacina BCG/imunologia , Modelos Animais de Doenças , Humanos , Lipídeos/administração & dosagem , Lipídeos/imunologia , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/imunologia , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/microbiologia
17.
Malays J Med Sci ; 18(4): 5-12, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22589668

RESUMO

Research, development, and production of vaccines are still highly dependent on the use of animal models in the various evaluation steps. Despite this fact, there are strong interests and ongoing efforts to reduce the use of animals in vaccine development. Tuberculosis vaccine development is one important example of the complexities involved in the use of animal models for the production of new vaccines. This review summarises some of the general aspects related with the use of animals in vaccine research and production, as well as achievements and challenges towards the rational use of animals, particularly in the case of tuberculosis vaccine development.

18.
Vaccine ; 29(37): 6236-41, 2011 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-21736914

RESUMO

Proteoliposomes (PL) obtained from Mycobacterium smegmatis (Ms) were evaluated for their capacity to elicit cross-reactive responses against Mycobacterium tuberculosis (Mtb) antigens in BALB/c mice. Animals immunized with PL adjuvanted with alum (PL-AL) or Freund's Incomplete Adjuvant (PL-IFA) showed significant IgG responses against the PL as well as total Ms lipids. Both groups of animals also showed significant IgG responses against BCG, but only animals immunized with PL-AL produced significant IgG responses against soluble cell wall proteins (SCWP) or whole cell lysate (WCL) of Mtb. Significant DTH responses against WCL were observed in both groups of animals after 24 h, but only PL-AL-immunized mice showed significant DTH responses after 48 h and 72 h. PL-Ms are capable of eliciting cross-reactive humoral and cellular responses against Mtb antigens and thus may be a potential vaccine strategy against tuberculosis.


Assuntos
Parede Celular/imunologia , Mycobacterium smegmatis/imunologia , Mycobacterium tuberculosis/imunologia , Proteolipídeos/imunologia , Adjuvantes Imunológicos , Compostos de Alúmen/farmacologia , Animais , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias , Reações Cruzadas , Feminino , Imunoglobulina G/biossíntese , Imunoglobulina G/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Mycobacterium bovis/imunologia , Tuberculose/imunologia , Tuberculose/prevenção & controle , Vacinas contra a Tuberculose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA