Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 391: 114914, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-32032643

RESUMO

Polybrominated diphenyl ethers (PBDEs) are persistent environmental pollutants considered as neurotoxicants and endocrine disruptors with important biological effects ranging from alterations in growth, reproduction, and effects on the hypothalamus-pituitary-adrenal axis. The vasopressinergic (AVPergic) system is a known target for pentaBDEs mixture (DE-71) and the structurally similar chemicals, polychlorinated biphenyls. However, the potential adverse effects of mixtures containing octaBDE compounds, like DE-79, on the AVPergic system are still unknown. The present study aims to examine the effects of perinatal DE-79 exposure on the AVPergic system. Dams were dosed from gestational day 6 to postnatal day 21 at doses of 0 (control), 1.7 (low) or 10.2 (high) mg/kg/day, and male offspring from all doses at 3-months-old were subjected to normosmotic and hyperosmotic challenge. Male offspring where later assessed for alterations in osmoregulation (i.e. serum osmolality and systemic vasopressin release), and both vasopressin immunoreactivity (AVP-IR) and gene expression in the hypothalamic paraventricular and supraoptic nuclei. Additionally, to elucidate a possible mechanism for the effects of DE-79 on the AVPergic system, both neuronal nitric oxide synthase immunoreactivity (nNOS-IR) and mRNA expression were investigated in the same hypothalamic nuclei. The results showed that perinatal DE-79 exposure AVP-IR, mRNA expression and systemic release in adulthood under normosmotic conditions and more evidently under hyperosmotic stimulation. nNOS-IR and mRNA expression were also affected in the same nuclei. Since NO is an AVP regulator, we propose that disturbances in NO could be a mechanism underlying the AVPergic system disruption following perinatal DE-79 exposure leading to osmoregulation deficits.


Assuntos
Poluentes Ambientais/toxicidade , Éteres Difenil Halogenados/toxicidade , Vasopressinas/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Feminino , Hipotálamo/metabolismo , Hipotálamo Anterior/metabolismo , Masculino , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo I , Osmorregulação/efeitos dos fármacos , Pressão Osmótica/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Gravidez , Ratos , Ratos Wistar
2.
Toxicol Appl Pharmacol ; 329: 173-189, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28579251

RESUMO

Polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) are environmental pollutants that produce neurotoxicity and neuroendocrine disruption. They affect the vasopressinergic system but their disruptive mechanisms are not well understood. Our group reported that rats perinatally exposed to Aroclor-1254 (A1254) and DE-71 (commercial mixtures of PCBs and PBDEs) decrease somatodendritic vasopressin (AVP) release while increasing plasma AVP responses to osmotic activation, potentially emptying AVP reserves required for body-water balance. The aim of this research was to evaluate the effects of perinatal exposure to A1254 or DE-71 (30mgkg/day) on AVP transcription and protein content in the paraventricular and supraoptic hypothalamic nuclei, of male and female rats, by in situ hybridization and immunohistochemistry. cFOS mRNA expression was evaluated in order to determine neuroendocrine cells activation due to osmotic stimulation. Animal groups were: vehicle (control); exposed to either A1254 or DE-71; both, control and exposed, subjected to osmotic challenge. The results confirmed a physiological increase in AVP-immunoreactivity (AVP-IR) and gene expression in response to osmotic challenge as reported elsewhere. In contrast, the exposed groups did not show this response to osmotic activation, they showed significant reduction in AVP-IR neurons, and AVP mRNA expression as compared to the hyperosmotic controls. cFOS mRNA expression increased in A1254 dehydrated groups, suggesting that the AVP-IR decrease was not due to a lack of the response to the osmotic activation. Therefore, A1254 may interfere with the activation of AVP mRNA transcript levels and protein, causing a central dysfunction of vasopressinergic system.


Assuntos
Arginina Vasopressina/metabolismo , Poluentes Ambientais/toxicidade , Éteres Difenil Halogenados/toxicidade , Células Neuroendócrinas/efeitos dos fármacos , Pressão Osmótica , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal , RNA Mensageiro/metabolismo , Núcleo Supraóptico/efeitos dos fármacos , Animais , Arginina Vasopressina/genética , Regulação para Baixo , Feminino , Masculino , Exposição Materna/efeitos adversos , Células Neuroendócrinas/metabolismo , Células Neuroendócrinas/patologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/patologia , Gravidez , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Mensageiro/genética , Ratos Sprague-Dawley , Ratos Wistar , Cloreto de Sódio/administração & dosagem , Núcleo Supraóptico/metabolismo , Núcleo Supraóptico/patologia , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA