Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Phytopathology ; 110(2): 447-455, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31454304

RESUMO

Phytophthora capsici is a destructive pathogen of cucurbits that causes root, crown, and fruit rot. Winter squash (Cucurbita spp.) production is limited by this pathogen in Michigan and other U.S. growing regions. Age-related resistance (ARR) to P. capsici occurs in C. moschata fruit but is negated by wounding. This study aimed to determine whether structural barriers to infection exist in the intact exocarp of maturing fruit exhibiting ARR. Five C. moschata cultivars were evaluated for resistance to P. capsici 10, 14, 16, 18, and 21 days postpollination (dpp). Scanning electron microscopy imaging of Chieftain butternut fruit exocarp of susceptible fruit at 7 dpp and resistant fruit at 14 and 21 dpp revealed significant increases in cuticle and epidermal thicknesses as fruit aged. P. capsici hyphae penetrated susceptible fruit at 7 dpp directly from the surface or through wounds before 6 h postinoculation (hpi) and completely degraded the fruit cell wall within 48 hpi. Resistant fruit remained unaffected at 14 and 21 dpp. The high correlation between the formation of a thickened cuticle and epidermis in maturing winter squash fruit and resistance to P. capsici indicates the presence of a structural barrier to P. capsici as the fruit matures.


Assuntos
Cucurbita , Resistência à Doença , Frutas , Phytophthora , Cucurbita/parasitologia , Resistência à Doença/fisiologia , Frutas/citologia , Frutas/parasitologia , Phytophthora/fisiologia , Doenças das Plantas/parasitologia
2.
Front Microbiol ; 15: 1425392, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39104578

RESUMO

Botrytis blossom blight and fruit rot, caused by Botrytis cinerea, is a significant threat to blueberries, potentially resulting in substantial economic losses if not effectively managed. Despite the recommendation of various cultural and chemical practices to control this pathogen, there are widespread reports of fungicide resistance, leading to decreased efficacy. This study aimed to characterize the resistance profile of B. cinerea isolated from blighted blossoms and fruit in 2019, 2020 and 2022 (n = 131, 40, and 37 for the respective years). Eight fungicides (fludioxonil, thiabendazole, pyraclostrobin, boscalid, fluopyram, fenhexamid, iprodione, and cyprodinil) were tested using conidial germination at specific discriminatory doses. Additionally, 86 isolates were phylogenetically characterized using the internal transcribed spacer regions (ITS) and the protein coding genes: glyceraldehyde-3-phosphate dehydrogenase (G3PDH), heat-shock protein 60 (HSP60), and RNA polymerase II second largest subunit (RPB2). This revealed higher fungicide resistance frequencies in 2020 and 2022 compared to 2019. Over all 3 years, over 80% of the isolates were sensitive to fludioxonil, fluopyram, and fenhexamid. Pyraclostrobin and boscalid showed the lowest sensitivity frequencies (<50%). While multi-fungicide resistance was observed in all the years, none of the isolates demonstrated simultaneous resistance to all tested fungicides. Botrytis cinerea was the most prevalent species among the isolates (74) with intraspecific diversity detected by the genes. Two isolates were found to be closely related to B. fabiopsis, B. galanthina, and B. caroliniana and 10 isolates appeared to be an undescribed species. This study reports the discovery of a potentially new species sympatric with B. cinerea on blueberries in Michigan.

3.
Front Microbiol ; 12: 660874, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33959117

RESUMO

As sequencing costs continue to decrease, new tools are being developed for assessing pathogen diversity and population structure. Traditional marker types, such as microsatellites, are often more cost effective than single-nucleotide polymorphism (SNP) panels when working with small numbers of individuals, but may not allow for fine scale evaluation of low or moderate structure in populations. Botrytis cinerea is a necrotrophic plant pathogen with high genetic variability that can infect more than 200 plant species worldwide. A panel of 52 amplicons were sequenced for 82 isolates collected from four Michigan vineyards representing 2 years of collection and varying fungicide resistance. A panel of nine microsatellite markers previously described was also tested across 74 isolates from the same population. A microsatellite and SNP marker analysis of B. cinerea populations was performed to assess the genetic diversity and population structure of Michigan vineyards, and the results from both marker types were compared. Both methods were able to detect population structure associated with resistance to the individual fungicides thiabendazole and boscalid, and multiple fungicide resistance (MFR). Microsatellites were also able to differentiate population structure associated with another fungicide, fluopyram, while SNPs were able to additionally differentiate structure based on year. For both methods, AMOVA results were similar, with microsatellite results explaining a smaller portion of the variation compared with the SNP results. The SNP-based markers presented here were able to successfully differentiate population structure similar to microsatellite results. These SNP markers represent new tools to discriminate B. cinerea isolates within closely related populations using multiple targeted sequences.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA