Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Pediatr Gastroenterol Nutr ; 72(6): 833-841, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33534362

RESUMO

OBJECTIVES: Striking histopathological overlap between distinct but related conditions poses a disease diagnostic challenge. There is a major clinical need to develop computational methods enabling clinicians to translate heterogeneous biomedical images into accurate and quantitative diagnostics. This need is particularly salient with small bowel enteropathies; environmental enteropathy (EE) and celiac disease (CD). We built upon our preliminary analysis by developing an artificial intelligence (AI)-based image analysis platform utilizing deep learning convolutional neural networks (CNNs) for these enteropathies. METHODS: Data for the secondary analysis was obtained from three primary studies at different sites. The image analysis platform for EE and CD was developed using CNNs including one with multizoom architecture. Gradient-weighted class activation mappings (Grad-CAMs) were used to visualize the models' decision-making process for classifying each disease. A team of medical experts simultaneously reviewed the stain color normalized images done for bias reduction and Grad-CAMs to confirm structural preservation and biomedical relevance, respectively. RESULTS: Four hundred and sixty-one high-resolution biopsy images from 150 children were acquired. Median age (interquartile range) was 37.5 (19.0-121.5) months with a roughly equal sex distribution; 77 males (51.3%). ResNet50 and shallow CNN demonstrated 98% and 96% case-detection accuracy, respectively, which increased to 98.3% with an ensemble. Grad-CAMs demonstrated models' ability to learn different microscopic morphological features for EE, CD, and controls. CONCLUSIONS: Our AI-based image analysis platform demonstrated high classification accuracy for small bowel enteropathies which was capable of identifying biologically relevant microscopic features and emulating human pathologist decision-making process. Grad-CAMs illuminated the otherwise "black box" of deep learning in medicine, allowing for increased physician confidence in adopting these new technologies in clinical practice.


Assuntos
Inteligência Artificial , Doença Celíaca , Biópsia , Doença Celíaca/diagnóstico , Criança , Pré-Escolar , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Redes Neurais de Computação
2.
Artigo em Inglês | MEDLINE | ID: mdl-34726364

RESUMO

Celiac Disease (CD) and Environmental Enteropathy (EE) are common causes of malnutrition and adversely impact normal childhood development. CD is an autoimmune disorder that is prevalent worldwide and is caused by an increased sensitivity to gluten. Gluten exposure destructs the small intestinal epithelial barrier, resulting in nutrient mal-absorption and childhood under-nutrition. EE also results in barrier dysfunction but is thought to be caused by an increased vulnerability to infections. EE has been implicated as the predominant cause of under-nutrition, oral vaccine failure, and impaired cognitive development in low-and-middle-income countries. Both conditions require a tissue biopsy for diagnosis, and a major challenge of interpreting clinical biopsy images to differentiate between these gastrointestinal diseases is striking histopathologic overlap between them. In the current study, we propose a convolutional neural network (CNN) to classify duodenal biopsy images from subjects with CD, EE, and healthy controls. We evaluated the performance of our proposed model using a large cohort containing 1000 biopsy images. Our evaluations show that the proposed model achieves an area under ROC of 0.99, 1.00, and 0.97 for CD, EE, and healthy controls, respectively. These results demonstrate the discriminative power of the proposed model in duodenal biopsies classification.

3.
EBioMedicine ; 45: 456-463, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31229436

RESUMO

BACKGROUND: Children with severe acute malnutrition (SAM), with or without diarrhoea, often have enteropathy, but there are few molecular data to guide development of new therapies. We set out to determine whether SAM enteropathy is characterised by specific transcriptional changes which might improve understanding or help identify new treatments. METHODS: We collected intestinal biopsies from children with SAM and persistent diarrhoea. mRNA was extracted from biopsies, sequenced, and subjected to a progressive set of complementary analytical approaches: NOIseq, Gene Set Enrichment Analysis (GSEA), and correlation analysis of phenotypic data with gene expression. FINDINGS: Transcriptomic profiles were generated for biopsy sets from 27 children of both sexes, under 2 years of age, of whom one-third were HIV-infected. NOIseq analysis, constructed from phenotypic group extremes, revealed 66 differentially expressed genes (DEGs) out of 21,386 mapped to the reference genome. These DEGs include genes for mucins and mucus integrity, antimicrobial defence, nutrient absorption, C-X-C chemokines, proteases and anti-proteases. Phenotype - expression correlation analysis identified 1221 genes related to villus height, including increased cell cycling gene expression in more severe enteropathy. Amino acid transporters and ZIP zinc transporters were specifically increased in severe enteropathy, but transcripts for xenobiotic metabolising enzymes were reduced. INTERPRETATION: Transcriptomic analysis of this rare collection of intestinal biopsies identified multiple novel elements of pathology, including specific alterations in nutrient transporters. Changes in xenobiotic metabolism in the gut may alter drug disposition. Both NOIseq and GSEA identified gene clusters similar to those differentially expressed in pediatric Crohn's disease but to a much lesser degree than those identified in coeliac disease. FUND: Bill & Melinda Gates Foundation OPP1066118. The funding agency had no role in study design, data collection, data analysis, interpretation, or writing of the report.


Assuntos
Diarreia/genética , Enteropatias/genética , Desnutrição Aguda Grave/genética , Transcriptoma/genética , Biópsia , Criança , Pré-Escolar , Diarreia/epidemiologia , Diarreia/patologia , Feminino , Perfilação da Expressão Gênica , Humanos , Lactente , Enteropatias/epidemiologia , Enteropatias/patologia , Mucosa Intestinal/metabolismo , Masculino , Análise de Sequência de RNA , Desnutrição Aguda Grave/epidemiologia , Desnutrição Aguda Grave/patologia , Zâmbia/epidemiologia
4.
PLoS Negl Trop Dis ; 12(2): e0006224, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29415065

RESUMO

Enteropathies such as Crohn's disease are associated with enteric inflammation characterized by impaired TGF-ß signaling, decreased expression of phosphorylated (p)-SMAD2,3 and increased expression of SMAD7 (an inhibitor of SMAD3 phosphorylation). Environmental enteropathy (EE) is an acquired inflammatory disease of the small intestine (SI), which is associated with linear growth disruption, cognitive deficits, and reduced oral vaccine responsiveness in children <5 y in resource-poor countries. We aimed to characterize EE inflammatory pathways by determining SMAD7 and p-SMAD2,3 levels (using Western blotting) in EE duodenal biopsies (N = 19 children, 7 from Pakistan, 12 from Zambia) and comparing these with healthy controls (Ctl) and celiac disease (CD) patients from Italy. Densitometric analysis of immunoblots showed that EE SI biopsies expressed higher levels of both SMAD7 (mean±SD in arbitrary units [a.u.], Ctl = 0.47±0.20 a.u., EE = 1.13±0.25 a.u., p-value = 0.03) and p-SMAD2,3 (mean±SD, Ctl = 0.38±0.14 a.u., EE = 0.60±0.10 a.u., p-value = 0.03). Immunohistochemistry showed that, in EE, SMAD7 is expressed in both the epithelium and in mononuclear cells of the lamina propria (LP). In contrast, p-SMAD3 in EE is expressed much more prominently in epithelial cells than in the LP. The high SMAD7 immunoreactivity and lack of p-SMAD3 expression in the LP suggests defective TGF-ß signaling in the LP in EE similar to a previously reported SMAD7-mediated inflammatory pathway in refractory CD and Crohn's disease. However, Western blot densitometry showed elevated p-SMAD2,3 levels in EE, possibly suggesting a different inflammatory pathway than Crohn's disease but more likely reflecting cumulative protein expression from across all compartments of the mucosa as opposed to the LP alone. Further studies are needed to substantiate these preliminary results and to illustrate the relationship between SMAD proteins, TGF-ß signaling, and inflammatory cytokine production, all of which may be potential therapeutic targets.


Assuntos
Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Proteína Smad7/metabolismo , Adolescente , Biópsia , Criança , Pré-Escolar , Duodeno/patologia , Endoscopia , Células Epiteliais/metabolismo , Epitélio/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Imuno-Histoquímica , Lactente , Itália , Masculino , Mucosa/metabolismo , Paquistão , Fosforilação , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Vacinas , Zâmbia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA