RESUMO
A microscale colorimetric assay was designed and implemented for the simultaneous determination of clinical chemistry tests measuring six parameters, including glucose (GLU), total protein (TP), human serum albumin (HSA), uric acid (UA), total cholesterol (TC), and triglycerides (TGs) in plasma samples. The test kit was fabricated using chromogenic reagents, comprising specific enzymes and binding dyes. Multiple colors that appeared on the reaction well when it was exposed to each analyte were captured by a smartphone and processed by the homemade Check6 application, which was designed as a colorimetric analyzer and simultaneously generated a report that assessed test results against gender-dependent reference ranges. Six blood checkup parameters for four plasma samples were conducted within 12 min on one capture picture. The assay achieved wide working concentration ranges of 10.45-600 mg dL-1 GLU, 1.39-10.0 g dL-1 TP, 1.85-8.0 g dL-1 HSA, 0.86-40.0 mg dL-1 UA, 11.28-600 mg dL-1 TC, and 11.93-400 mg dL-1 TGs. The smartphone-based assay was accurate with recoveries of 93-108% GLU, 93-107% TP, 92-107% HSA, 93-107% UA, 92-107% TC, and 99-113% TGs. The coefficient of variation for intra-assay and inter-assay precision ranged from 3.2-5.2% GLU, 4.6-5.3% TP, 4.3-5.3% HSA, 2.8-6.6% UA, 2.7-6.5% TC, and 1.1-3.9% TGs. This assay demonstrated remarkable accuracy in quantifying the concentration-dependent color intensity of the plasma, even in the presence of other suspected interferences commonly present in serum. The results of the proposed method correlated well with results determined by the microplate spectrophotometer (R2 > 0.95). Measurement of these six clinical chemistry parameters in plasma using a microscale colorimetric test kit coupled with the Check6 smartphone application showed potential for real-time point-of-care analysis, providing cost-effective and rapid assays for health checkup testing.
Assuntos
Colorimetria , Testes Hematológicos , Smartphone , Testes Imediatos , Colorimetria/instrumentação , Colorimetria/métodos , Testes Hematológicos/instrumentação , Humanos , Kit de Reagentes para DiagnósticoRESUMO
Nanoscale imprinting significantly increases the specific surface area and recognition capabilities of a molecularly imprinted polymer by improving accessibility to analytes, binding kinetics, and template removal. Herein, we present a novel synthetic route for a dual molecularly imprinted polymer (dual-MIP) of the carcinogen oxidative stress biomarkers 3-nitrotyrosine (3-NT) and 4-nitroquinolin-N-oxide (4-NQO) as coatings on graphene quantum-dot capped gold nanoparticles (GQDs-AuNPs). The dual-MIP was successfully coated on the GQDs-AuNPs core via a (3-mercaptopropyl) trimethoxysilane (MPTMS) linkage and copolymerization with the 3-aminopropyltriethoxysilane (APTMS) functional monomer. In addition, we fabricated a facile and compact three-dimensional electrochemical paper-based analytical device (3D-ePAD) for the simultaneous determination of the dual biomarkers using a GQDs-AuNPs@dual-MIP-modified graphene electrode (GQDs-AuNPs@dual-MIP/SPGE). The developed dual-MIP device provides greatly enhanced electrochemical signal amplification due to the improved electrode-specific surface area, electrocatalytic activity, and the inclusion of large numbers of dual-imprinted sites for 3-NT and 4-NQO detection. Quantitative analysis used square wave voltammetry, with an oxidation current appearing at -0.10 V for 4-NQO and +0.78 V for 3-NT. The dual-MIP sensor revealed excellent linear dynamic ranges of 0.01 to 500 µM for 3-NT and 0.005 to 250 µM for 4-NQO, with detection limits in nanomolar levels for both biomarkers. Furthermore, the dual-MIP sensor for the simultaneous determination of 3-NT and 4-NQO provides high accuracy and precision, with no evidence of interference from urine, serum, or whole blood samples.
Assuntos
Grafite , Nanopartículas Metálicas , Impressão Molecular , Ouro , Polímeros Molecularmente Impressos , Impressão Molecular/métodos , Técnicas Eletroquímicas/métodos , Carcinógenos , Limite de Detecção , Eletrodos , Biomarcadores , Estresse Oxidativo , Testes ImediatosRESUMO
This work presents a simple hydrothermal synthesis of nitrogen-doped carbon dots (N-CDs), fabrication of microfluidic paper-based analytical device (µPAD), and their joint application for colorimetric determination of total cholesterol (TC) in human blood. The N-CDs were characterized by various techniques including transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and X-ray powder diffraction (XRD), and the optical and electronic properties of computational models were studied using the time-dependent density functional theory (TD-DFT). The characterization results confirmed the successful doping of nitrogen on the surface of carbon dots. The N-CDs exhibited high affinity toward 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)-diammonium salt (ABTS) with the Michaelis-Menten constant (KM) of 0.018 mM in a test for their peroxidase-like activity. Particularly, since hydrogen peroxide (H2O2) is the oxidative product of cholesterol in the presence of cholesterol oxidase, a sensitive and selective method of cholesterol detection was developed. Overall, the obtained results from TD-DFT confirm the strong adsorption of H2O2 on the graphitic N positions of the N-CDs. The laminated three-dimensional (3D)-µPAD featuring a 6 mm circular detection zone was fabricated using a simple wax screen printing technique. Classification of TC according to the clinically relevant criteria (healthy, <5.2 mM; borderline, 5.2-6.2 mM; and high risk, >6.2 mM) could be determined by the naked eye within 10 min by simple comparison using a color chart. Overall, the proposed colorimetric device serves as a low-cost, rapid, simple, sensitive, and selective alternative for TC detection in whole blood samples that is friendly to unskilled end users.
Assuntos
Carbono , Pontos Quânticos , Humanos , Peróxido de Hidrogênio , Microfluídica , Nitrogênio , PeroxidasesRESUMO
We propose the fabrication of a novel ready-to-use electrochemical sensor based on a screen-printed graphene paste electrode (SPGrE) modified with platinum nanoparticles and coated with a molecularly imprinted polymer (PtNPs@MIP) for sensitive and cost-effective detection of paraquat (PQ) herbicide. Successive coating of the PtNPs surface with SiO2 and vinyl end-groups formed the PtNPs@MIP. Next, we terminated the vinyl groups with a molecularly imprinted polymer (MIP) shell. MIP was attached to the PtNPs cores using PQ as the template, methacrylic acid (MAA) as the monomer, ethylene glycol dimethacrylate (EGDMA) as the cross-linker, and 2,2'-azobisisobutyronitrile (AIBN) as the initiator. Coating the SPGrE surface with PtNPs@MIP furnished the PQ sensor. We studied the electrochemical mechanism of PQ on the MIP sensor using cyclic voltammetry (CV) experiments. The PQ oxidation current signal appears at -1.08 V and -0.71 V vs. Ag/AgCl using 0.1 M potassium sulfate solution. Quantitative analysis was performed by anodic stripping voltammetry (ASV) using a deposition potential of -1.4 V for 60 s and linear sweep voltammetric stripping. The MIP sensor provides linearity from 0.05 to 1000 µM (r2 = 0.999), with a lower detection limit of 0.02 µM (at -0.71 V). The compact imprinted sensor gave a highly sensitive and selective signal toward PQ. The ready-to-use MIP sensor can provide an alternative approach to the determination of paraquat residue on vegetables and fruits for food safety applications.
Assuntos
Grafite , Nanopartículas Metálicas , Impressão Molecular , Técnicas Eletroquímicas , Eletrodos , Polímeros Molecularmente Impressos , Paraquat , Platina , Dióxido de SilícioRESUMO
This work presents the development and application of a novel analytical approach for the determination of acid and base concentrations by titration using a microfluidic thread-based analytical device (µTAD). This approach proved to be a simple to fabricate and to use, high precision, and cost-efficient means of acid-base quantification. The µTAD was fabricated by immobilizing the untreated cotton threads onto a wood frame, followed by pre-coating with an indicator (20 µL) and a primary standard solution (3 µL), and was tested using real samples including drug, food, and household products where 3 µL of each sample was dropped onto the center of a thread. Afterward, the distance of color change on the thread, easily observed and measured using the naked eye and a ruler, was used for analysis. The analysis using the µTAD, completed within 2 minutes and validated by the conventional titration, showed high accuracy and precision (RSD < 12.9%), good linearity ranges and low limit of quantification. The fabricated µTAD also remained stable for an extended period of time (>2 weeks under various storage conditions).
RESUMO
A simple flow injection analysis (FIA) integrating with a metal-free approach for total antioxidant capacity (TAC) was developed. The non-toxic reaction was based on generating a vibrant blue radical from imipramine to avoid the potential interferents arising from the colorful fruit extracts. The blue radical can be rapidly scavenged by antioxidant compounds present in the sample. TAC values of Thai tropical fruit extracts were assessed by monitoring the quenching in absorbance of the test mixture following the addition of the antioxidant compounds/fruit extracts. The FIA co-operated in order to increase the sample throughput. The results demonstrated that Antidesma thwaiteaianum Muell. Arg. has the highest capacity followed by Terminalia chebula Retz. and Phyllanthus Emblica Linn., respectively. An excellent correlation between the proposed method was found with the DPPH assay. The proposed method allowed the TAC determination of fruit extracts in a high-throughput and straightforward way in accordance with the principles of green analytical chemistry.
RESUMO
Measuring the levels of the biomarkers vanillylmandelic acid (VMA) and 5-Hydroxyindole-3-acetic acid (5-HIAA) is a valuable tool for clinical diagnosis not only of neuroblastoma or carcinoid syndrome, but also of essential hypertension, depression, migraine, and Tourette's syndrome. Herein, we explore using graphene quantum dots (GQDs) coated with molecularly imprinted polymer (MIP) as novel dual-imprinted sensors for selective and simultaneous determination of VMA and 5-HIAA in urine and plasma samples. The dual-MIP was successfully coated on the GQDs core via co-polymerization of (3-aminopropyl) triethoxysilane (APTES) and tetraethyl orthosilicate (TEOS), acting as functional and cross-linking monomers, respectively. In addition, we successfully created the dual imprinted VMA and 5-HIAA shell on the GQDs' core via a one-pot synthesis. We fabricated a facile and ready-to-use Origami three-dimensional electrochemical paper-based analytical device (Origami 3D-ePAD) for simultaneous determination of VMA and 5-HIAA using a GQDs@dual-MIP modified graphene electrode (GQDs@dual-MIP/SPGE). The Origami 3D-ePAD was designed to form a voltammetric cell on a three-layer foldable sheet with several advantages. For example, they were quickly assembled and enhanced the device's physical durability with the hydrophobic backup sheet. The developed dual imprinted Origami 3D-ePAD leads to substantially enhanced sensitivity and selectivity to electrochemical signal amplification generated from increasing the electrode-specific surface area, electrocatalytic activity, and the large numbers of dual imprinted sites for VMA and 5-HIAA detection. The synthetic recognition sites are highly selective for 5-HIAA and VMA molecules with an imprinting factor of 8.46 and 7.10, respectively. Quantitative analysis relying on square wave voltammetry reveals excellent linear dynamic ranges of around 0.001-25 µM, with detection limits of 0.023 nM for 5-HIAA and 0.047 nM for VMA (3Sb, n = 3). The Origami 3D-ePAD provides high accuracy and precision (i.e., recovery values of 5-HIAA ranged from 82.98 to 98.40 %, and VMA ranged from 83.28 to 104.39 %), and RSD less than 4.37 %) in urine and plasma samples without any evidence of interference. Hence, it is well suited as a facile and ready-to-use disposable device for point-of-care testing. It is straightforward, cost-effective, reproducible, and stable. Furthermore, it allows for rapid analysis (analysis time â¼20s) useful in medical diagnosis and other relevant fields.
Assuntos
Tumor Carcinoide , Grafite , Impressão Molecular , Pontos Quânticos , Humanos , Pontos Quânticos/química , Polímeros Molecularmente Impressos , Grafite/química , Ácido Vanilmandélico , Biomarcadores Tumorais , Limite de Detecção , Ácido Hidroxi-Indolacético , Acetatos , Impressão Molecular/métodos , Técnicas Eletroquímicas/métodosRESUMO
Oxidized low-density lipoprotein (oxLDL) induces the formation of atherosclerotic plaques. Apolipoprotein B100 (apoB100) is a crucial protein component in low-density lipoprotein (LDL), which includes oxLDL. The oxidation of amino acids and subsequent alterations in their structure generate oxLDL, which is a significant biomarker for the initial phases of coronary artery disease. This study employed molecular docking and molecular dynamics utilizing the MM/GBSA method to identify aptamers with a strong affinity for oxidized apoB100. Molecular docking and molecular dynamics were performed on two sequences of the aptamer candidates (aptamer no.11 (AP11: 5'-CTTCGATGTAGTTTTTGTATGGGGTGCCCTGGTTCCTGCA-3') and aptamer no.26 (AP26: 5'-GCGAACTCGCGAATCCAGAACGGGCTCGGTCCCGGGTCGA-3')), yielding respective binding free energies of -149.08 kcal/mol and -139.86 kcal/mol. Interaction modeling of the simulation revealed a strong hydrogen bond between the AP11-oxidized apoB100 complexes. In an aptamer-based gold nanoparticle (AuNP) aggregation assay, AP11 exhibits a color shift from red to purple with the highest absorbance ratio, and shows strong binding affinity to oxLDL, correlating with the simulation model results. AP11 demonstrated the potential for application as a novel recognition element in diagnostic methodologies and may also contribute to future advancements in preventive therapies for coronary artery disease.
Assuntos
Apolipoproteína B-100 , Aptâmeros de Nucleotídeos , Lipoproteínas LDL , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Lipoproteínas LDL/química , Lipoproteínas LDL/metabolismo , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Apolipoproteína B-100/química , Apolipoproteína B-100/metabolismo , Humanos , Ouro/química , Nanopartículas Metálicas/químicaRESUMO
We developed a novel, compact, three-dimensional electrochemical paper-based analytical device (3D-ePAD) for patulin (PT) determination. The selective and sensitive PT-imprinted Origami 3D-ePAD was constructed based on a graphene screen-printed electrode modified with manganese-zinc sulfide quantum dots coated with patulin imprinted polymer (Mn-ZnS QDs@PT-MIP/GSPE). The Mn-ZnS QDs@PT-MIP was synthesized using 2-oxindole as the template, methacrylic acid (MAA) as a monomer, N,N'-(1,2-dihydroxyethylene) bis (acrylamide) (DHEBA) as cross-linker and 2,2'-azobis (2-methylpropionitrile) (AIBN) as initiator, respectively. The Origami 3D-ePAD was designed with hydrophobic barrier layers formed on filter paper to provide three-dimensional circular reservoirs and assembled electrodes. The synthesized Mn-ZnS QDs@PT-MIP was quickly loaded on the electrode surface by mixing with graphene ink and then screen-printing on the paper. The PT-imprinted sensor provides the greatest enhancement in redox response and electrocatalytic activity, which we attributed to synergetic effects. This arose from an excellent electrocatalytic activity and good electrical conductivity of Mn-ZnS QDs@PT-MIP, which improved electron transfer between PT and the electrode surface. Under the optimized DPV conditions, a well-defined PT oxidation peak appears at +0.15 V (vs Ag/AgCl) using 0.1 M of phosphate buffer (pH 6.5) containing 5 mM K3Fe(CN)6 as the supporting electrolyte. Our developed PT imprinted Origami 3D-ePAD revealed excellent linear dynamic ranges of 0.001-25 µM, with a detection limit of 0.2 nM. Detection performance indicated that our Origami 3D-ePAD possesses outstanding detection performance from fruits and CRM in terms of high accuracy (%Error for inter-day is 1.11%) and precision (%RSD less than 4.1%). Therefore, the proposed method is well-suited as an alternative platform for ready-to-use sensors in food safety. The imprinted Origami 3D-ePAD is an excellent disposable device with a simple, cost-effective, and fast analysis, and it is ready to use for determining patulin in actual samples.
RESUMO
Herein, we present a novel Origami 3D-µPAD for colorimetric carbaryl detection using a super-efficient catalyst, namely mesoporous silica-platinum nanoparticles coated with a molecularly imprinted polymer (MSN-PtNPs@MIP). Morphological and structural characterization reveals that coating MIP on the MSN-PtNPs surface significantly increases the selective area, leading to larger numbers of imprinting sites for improved sensitivity and selectivity in determining carbaryl. The as-prepared MSN-PtNPs@MIP was used for catalytic oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by H2O2. Carbaryl selectively binds to the cavities embedded on the MSN-PtNPs surface and subsequently inhibits TMB oxidation leading the color to change to light blue. The change of reaction color from dark blue to light blue depends on the concentration of carbaryl within the 3D-µPAD detection zone. This design integrates the advantages of highly efficient sample delivery through micro channels (top layer) and efficient partition/separation paths (bottom layer) of the cellulose substrate to achieve both improved detection sensitivity and selectivity. Assay on the Origami 3D-µPAD can determine carbaryl by ImageJ detection, over a dynamic range of 0.002-20.00 mg kg-1, with a very low limit of detection at 1.5 ng g-1. The developed 3D-µPAD exhibit high accuracy when applied to detect carbaryl in fruits, with satisfactory recoveries from 90.1% to 104.0% and relative differences from the reference HPLC values less than 5.0%. Furthermore, the fabricated Origami 3D-µPAD provides reliable durability and good reproducibility (3.19% RSD for fifteen devices).
Assuntos
Nanopartículas Metálicas , Impressão Molecular , Carbaril , Polímeros Molecularmente Impressos , Dióxido de Silício/química , Polímeros/química , Platina , Nanopartículas Metálicas/química , Peróxido de Hidrogênio , Microfluídica , Reprodutibilidade dos TestesRESUMO
We present a novel dual-imprinted electrochemical paper-based analytical device (Di-ePAD) to simultaneously determine 8-hydroxy-2'-deoxyguanosine (8-OHdG) and 3-nitrotyrosine (3-NT) and assess oxidative and nitrative biomarkers in urine and plasma samples. The Di-ePAD was designed with hydrophobic barrier layers formed on filter paper to provide three-dimensional circular reservoirs and assembled electrodes. The molecularly imprinted polymer (MIP) was synthesized using a silica nanosphere decorated with silver nanoparticles (SiO2@AgNPs) as a core covered with dual-analyte imprinted sites on the polymer to recognize selectively and bind the target biomarkers. This strategy drives monodispersity and enhances the conductivity of the resulting MIP core-shell products. 3-NT-MIP and 8-OHdG-MIP were synthesized by successively coating the surface of SiO2@AgNPs with l-Cysteine via the thiol group, then terminating with MIP shells. The dual imprinted core-shell composites possess attractive properties for the target biomarkers' sensing, including catalytic activity, selectivity, and good conductivity. The Di-ePAD revealed excellent linear dynamic ranges of 0.01-500 µM for 3-NT and 0.05-500 µM for 8-OHdG, with detection limits of 0.0027 µM for 3-NT and 0.0138 µM for 8-OHdG. This newly developed method based on the synergistic effects of SiO2@AgNPs combined with promising properties of MIP offers outstanding selectivity, sensitivity, reproducibility, simplicity, and low cost for quantitative analysis of 3-NT and 8-OHdG. The proposed Di-ePAD showed good accuracy and precision when applied to actual samples, including urine and serum samples validated by a conventional HPLC method.
Assuntos
Nanopartículas Metálicas , Impressão Molecular , Biomarcadores , Técnicas Eletroquímicas , Eletrodos , Limite de Detecção , Estresse Oxidativo , Reprodutibilidade dos Testes , Dióxido de Silício , PrataRESUMO
We report a new ready-to-use sensor for simultaneous determination of paraquat (PQ) and glyphosate (GLY) based on a graphite screen-printed electrode modified with a dual-molecularly imprinted polymer coated on a mesoporous silica-platinum core. Amino-mesoporous silica nanoparticles (MSN-NH2) were first synthesized by a simple co-condensation method using tetraethyl orthosilicate and 3-aminopropyltrimethoxysilane. PtNPs were then decorated on the surface of MSN-NH2 by chemical reduction. Finally, the dual-MIP was successfully coated on the MSN-PtNP core. This 3D-surface-imprinting strategy enhances the conductivity and monodispersity of the MSN-PtNPs@d-MIP. Quantitative analysis was performed by differential pulse voltammetry with an oxidation current appearing at -0.95 V for PQ and +0.97 V for GLY. The dual-MIP sensor shows good linear calibration curves in the range of 0.025-500 µM for both analytes with detection limits of 3.1 nM and 4.0 nM for PQ and GLY, respectively. The dual-MIP sensor shows high selectivity and specificity, attributed to the increased affinity of the imprinted cavities formed on the polymer film for the target PQ and GLY molecules. The proposed dual-MIP sensor was successfully applied to detect PQ and GLY concentrations simultaneously in water samples. The ready-to-use dual-MIP sensor is well suited for water-quality control and on-site applications without sophisticated instrumentation.
Assuntos
Herbicidas , Impressão Molecular , Técnicas Eletroquímicas/métodos , Glicina/análogos & derivados , Limite de Detecção , Impressão Molecular/métodos , Paraquat , Água , GlifosatoRESUMO
Cadmium ion (Cd (II)) is a highly toxic heavy metal usually found in natural water. Exposure to Cd (II) can produce serious effects in human organs such as Itai-Itai disease. Therefore, the maximum allowance levels of Cd (II) in drinking water and herbal medicines imposed by the World Health Organization (WHO) are 3 µg L-1 and 300 µg kg-1, respectively. In this work, nitrogen-doped graphene quantum dots (N-GQDs) as a fluorescent sensor for Cd (II) determination was developed in both solution-based and paper-based systems. N-GQDs were synthesized from citric acid (CA) and ethylenediamine (EDA) via the hydrothermal method. The synthesized N-GQDs emitted intense blue fluorescence with a quantum yield (QY) of up to 80%. The functional groups on the surface of N-GQDs measured by FTIR were carboxyl (COO-), hydroxyl (OH-), and amine (NH2) groups, suggesting that they could be bound to Cd (II) for complexation. The fluorescence intensity of N-GQDs was gradually enhanced with the increase of Cd (II) concentration. This phenomenon was proved to result from the fluorescence enhancement (turn-on) based on the chelation enhanced fluorescence (CHEF) mechanism. Under the optimum conditions in the solution-based and paper-based systems, the limits of detection (LODs) were found to be 1.09 and 0.59 µg L-1, respectively. Furthermore, the developed sensors showed relatively high selectivity toward Cd (II) over ten other metal cations and six other anions of different charges. The performance of the sensor in real water and herbal medicine samples exhibited no significant difference as compared to the results of the validation method (ICP-OES). Therefore, the developed sensors can be used as fluorescent sensors for Cd (II) determination with high sensitivity, high selectivity, short incubation time (5 min). As such, the paper-based strategy has excellent promising potential for practical analysis of Cd (II) in water and herbal medicine samples with a trace level of Cd (II) concentrations.
Assuntos
Grafite , Pontos Quânticos , Cádmio , Fluorometria , Humanos , NitrogênioRESUMO
A poly(aniline-co-m-ferrocenylaniline) was successfully synthesized on a glassy carbon electrode (GCE) by electrochemical copolymerization using a scan potential range from -0.3 to +0.9 V (vs. Ag/AgCl) in 0.5 M H2SO4 containing 30% acetonitrile (ACN), 0.1 M aniline (Ani) and 0.005 M m-ferrocenyaniline (m-FcAni). The field emission scanning electron microscope (FESEM) and electrochemical methods were used to characterize the poly(Ani-co-m-FcAni) modified electrode. The poly(Ani-co-m-FcAni)/GCE exhibited excellent electrocatalytic oxidation of ascorbic acid (AA) in citrate buffer solution (CBS, pH 5.0). The anodic peak potential of AA was shifted from +0.55 V at the bare GCE to +0.25 V at the poly(Ani-co-m-FcAni)/GCE with higher current responses than those seen on the bare GCE. The scan number at the 10th cycle was selected as the maximum scan cycle in electrochemical polymerization. The limit of detection (LOD) was estimated to be 2.0 µM based on the signal-to-noise ratio (S/N = 3). The amperometric responses demonstrated an excellent selectivity for AA determination over glucose (Glu) and dopamine (DA).
Assuntos
Compostos de Anilina/química , Ácido Ascórbico/análise , Técnicas Eletroquímicas/métodos , Compostos Ferrosos/química , Polímeros/química , Compostos de Anilina/síntese química , Ácido Ascórbico/química , Catálise , Dopamina/química , Eletrodos , Eletrólise , Compostos Ferrosos/síntese química , Frutose/química , Galactose/química , Glucose/química , Concentração de Íons de Hidrogênio , Metalocenos , Microscopia Eletrônica de Varredura , Oxirredução , Polímeros/síntese química , Cloreto de Sódio/química , Sacarose/química , Propriedades de SuperfícieRESUMO
We report a novel three-dimensional microfluidic paper-based analytical device (3D-µPAD) with colorimetric detection, using Mn-ZnS quantum dot embedded molecularly imprinted polymer (Mn-ZnS QD-MIP), for selective glyphosate determination in whole grain samples. Detection is based on the catalytic activity of Mn-ZnS QD-MIP in the H2O2 oxidation of ABTS. Glyphosate imprinted polymer is successfully synthesized on the Mn-ZnS QD surface using a poly (N-isopropylacrylamide) (NIPAM) and N, N'-Methylenebisacrylamide (MBA) as the functional monomers. The catalytic activity depends on binding or non-binding of glyphosate molecules on the synthetic recognition sites of the Mn-ZnS QD-MIP. Glyphosate selectively binds to the cavities embedded on the Mn-ZnS QD surface, and subsequently turns-off or inhibits the ABTS oxidation and color change to light green. The change of reaction color from dark green to light green depends on the concentration of glyphosate. We report, for the first time, using the relatively new penguard enamel colour to create a hydrophobic barrier. The foldable 3D-µPAD comprises three layers (top/center/bottom), named as the detection zone, immobilized Mn-ZnS QD-MIP disc, and sample loading. Assay on the 3D-µPAD can determine glyphosate by ImageJ detection, over an operating range of 0.005-50 µg mL-1 and with a detection limit of 0.002 µg mL-1. Our 3D-µPAD exhibits high accuracy, with a 0.4% (intra-day) and 0.7% (inter-day) relative difference from the certified CRM value. Moreover, the fabricated 3D-µPAD provides good reproducibility (1.7% RSD for ten devices). The developed 3D-µPAD was successfully applied to determine the glyphosate concentration in whole grain samples and shows great promise as an alternative highly selective and sensitive colorimetric method. The 3D-µPAD is well suited to food-quality control and onsite environmental-monitoring applications, without sophisticated instrumentation.
RESUMO
Salbutamol (SAL) can cause potential hazards to human health and its use as a growth promoter in meat-producing animals is illegal. This work reports a novel approach for competitive paper-based colorimetric immunoassay (PCI) using the Ag3 PO4 /Ag nanocomposite as label for sensitive and specific determination of SAL in flesh of swine and urine. The Ag3 PO4 /Ag nanocomposite was synthesized by a one-step chemical bath method, which could instantly oxidize a chromogenic substrate for the color development under acidic conditions without the participation of H2 O2 . This approach provides high affinity between the Ag3 PO4 /Ag nanocomposite and the substrate (with the Michaelis-Menten constant of 0.44 mM). In addition, the fabrication process of the PCI was simple and cost-effective. Particularly, the novel PCI also exhibits simplicity and cost-effectiveness of the fabrication process through a simple wax screen-printing, which requires inexpensive equipment and material including a screen, wax, a squeegee, and a hair dryer. Under optimal conditions, the competitive PCI exhibited a linearity range of 0.025 to 1.00 µg/L. The developed approach offers advantages over the conventional ELISA for the purpose of routine use because it requires a shorter incubation time (<1 hr), significantly small volumes of reagents and samples (<100 µL each), and an inexpensive consumer-grade digital camera coupled with a simple gray-scale transformation of the RGB (Red Green Blue) color image for the purpose of quantification of the detection. PRACTICAL APPLICATION: Salbutamol (SAL) can cause potential hazards to human health and the use of which as growth promoter in meat-producing animals is illegal. This work introduces a novel approach for competitive immunoassay on paper-based colorimetric immunoassay using the Ag3 PO4 /Ag nanocomposite as the label (instead of using natural enzyme) for low-cost, sensitive, and specific determination of SAL residues at low level in flesh of swine and urine samples. The proposed approach offers advantages over the conventional ELISA for the purpose of routine use.
Assuntos
Albuterol/urina , Colorimetria/métodos , Resíduos de Drogas/análise , Imunoensaio/métodos , Carne/análise , Animais , Contaminação de Alimentos/análise , Humanos , Nanocompostos/química , Fosfatos/química , Prata/química , Compostos de Prata/química , SuínosRESUMO
A new and facile method for selective measurement of profenofos (PFF) using a simple flow-injection system with a molecularly-imprinted-polymer-coated carbon nanotube (3D-CNTs@MIP) amperometric sensor is proposed. The 3D-CNTs@MIP was synthesized by successively coating the surface of carboxylated CNTs with SiO2 and vinyl end groups, then terminating with molecularly imprinted polymer (MIP) shells. MIP was grafted to the CNT cores using methacrylic acid (MAA) monomer, ethylene glycol dimethacrylate (EGDMA) as cross linker, and 2,2'-azobisisobutyronitrile (AIBN) as initiator. We constructed the PFF sensor by coating the surface of a glassy carbon electrode (GCE) with 3D-CNTs@MIP and removed the imprinting template by solvent extraction. Morphological and structural characterization reveal that blending of the MIP on the CNT surface significantly increases the selective surface area, leading to greater numbers of imprinting sites for improved sensitivity and electron transfer. The 3D-CNTs@MIP sensor exhibits a fast response with good recognition when applied to PFF detection by cyclic voltammetry and amperometry. The PFF oxidation current signal appears at +0.7 V vs Ag/AgCl using 0.1 M phosphate buffer (pH 7.0) as the carrier solution. The designed 3D-imprinted sensor provides a linear response over the range 0.01-200 µM (r2 = 0.995) with a low detection limit of 0.002⯵M (3σ). The sensor was successfully applied to detection of PFF in vegetable samples.
Assuntos
Contaminação de Alimentos/análise , Inseticidas/análise , Nanotubos de Carbono/química , Organotiofosfatos/análise , Resíduos de Praguicidas/análise , Polímeros/química , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Eletrodos , Limite de Detecção , Impressão Molecular , Nanocompostos/química , Dióxido de Silício/química , Verduras/químicaRESUMO
We report a novel amperometric flow-injection (FI) analysis of creatinine based on a sensor comprising copper oxide nanoparticles (CuO) coated with a molecularly-imprinted polymer (CuO@MIP) and decorating a carbon-paste electrode (CPE) to form the CuO@MIP/CPE electrode. The CuO@MIP was synthesized by using CuO as the supporting core, creatinine as the template, methacrylic acid (MAA) as monomer, N, N'-(1,2-dihydroxyethylene)bis(acrylamide) (DHEBA) as cross-linker, and 2,2'-azobis (2-methylpropionitrile) (AIBN) as initiator. Morphology and structural characterization reveal that CuO nanoparticle imprinted sites (CuO) synthesized using a precipitation method, exhibits features that are well suited to creatinine detection: high surface area, good analyte diffusion and adsorption characteristics that provide shorter response times, and large numbers of specific cavities for enhanced analyte capacity and sensitivity. Cyclic voltammetric measurements indicate that our sensor provides excellent performance toward electro-oxidation of creatinine. The amperometric FI system was used to quantitatively determine creatinine at the CuO@MIP/CPE sensor, in a phosphate buffer carrier. The imprinted sensor exhibits excellent performance for creatinine oxidation at an applied potential of +0.35â¯V and flow rate of 0.6â¯mL.min-1. The as-prepared sensor exhibits a linear dynamic range for creatinine detection from 0.5 to 200⯵M (r2â¯=â¯0.995) with a limit of detection of 0.083 µM (S/Nâ¯=â¯3). The system exhibits satisfactorily good precision (%RSDâ¯=â¯1.94%, nâ¯=â¯30) and selectivity toward creatinine. There is only approximately 20% loss from initial response after 2 weeks when stored at 4 oC. We successfully applied the FI detection system to detect creatinine in human urine samples.
Assuntos
Carbono/química , Cobre/química , Creatinina/química , Nanopartículas/química , Polímeros/química , Acrilamidas/química , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Eletrodos , Análise de Injeção de Fluxo/métodos , Humanos , Limite de Detecção , Metacrilatos/química , Impressão Molecular/métodosRESUMO
This work reports the first use of cis-1,4-polyisoprene obtained from rubber latex (RL) waste as the hydrophobic reagent for the fabrication of a microfluidic paper-based analytical device (µPAD), providing a user-friendly means for magnesium detection. The µPAD was fabricated using a screen printing technique and the barcode-like paper sensor was then used for the detection of Mg(II) ions in RL and water samples. Using different types of paper media (paper towel, Whatman No.1 and Whatman No.4), the results indicate that the key factors in optimizing the quality of the fabricated µPAD include the viscosity of cis-1,4-polyisoprene solution which could be adjusted using different solvents and heating temperatures, the mesh screen size, the pore size of the paper substrates, and the dimension of the sample zone. The fabricated µPAD, which showed high chemical resistance, durability and design flexibility, was tested for the detection of Mg(II) ions using the reaction based on complexometric titration with EDTA where Eriochrome Black T was used as an indicator. An Android application "UBU OMg Sensor" was also developed to provide a simple, fast, and accurate means for end-users to interpret results generated by our developed µPAD.
RESUMO
Herein, we propose a highly sensitive and selective three-dimensional electrochemical paper-based analytical device (3D-ePAD) to determine serotonin (Ser). It uses a graphite-paste electrode modified with nanoparticles coated with molecularly imprinted polymer (MIP). Fe3O4@Au nanoparticles were encapsulated with silica to create novel nano-sized MIP. Morphology and structural characterization reveal that silica imprinted sites (Fe3O4@Au@SiO2) synthesized via sol-gel methods provide excellent features for Ser detection, including high porosity, and greatly improve analyte diffusion and adsorption to provide a faster response by the MIP sensor. The template molecule was effectively removed by solvent extraction to provide a greater number of specific cavities that enhance analyte capacity and sensitivity. The 3D-ePAD was fabricated by alkyl ketene dimer (AKD)-inkjet printing of a circular hydrophobic detection zone on filter paper for application of aqueous samples, coupled with screen-printed electrodes on the paper, which was folded underneath the hydrophobic zone. The sensor was constructed by drop coating of Fe3O4@Au@SiO2-MIP nanocomposites on the graphite electrode (GPE) surface. The MIP sensor (Fe3O4@Au@SiO2-MIP/GPE) was used in the detection of Ser by linear-sweep voltammetry (LSV) in 0.1â¯M phosphate buffer at pH 8.0. The device exhibits high sensitivity toward Ser, which we attribute to synergistic effects between catalytic properties, electrical conductivity of Fe3O4@Au@SiO2, and significantly increased numbers of imprinted sites. Ser oxidation was observed at +0.39 V. Anodic peak currents for Ser show linearity from 0.01 to 1000 µM (y = 0.0075 ± 0.0049 x + 0.4071 ± 0.0052, r2â¯=â¯0.993), with a detection limit of 0.002⯵M (3S/N). The device provides good repeatability (%relative standard deviations; RSD)â¯=â¯4.23%, calculated from the current responses of ten different MIP sensors). The device also exhibits high selectivity and reproducibility (%RSDâ¯=â¯8.35%, obtained from five calibration plots). The analytical performance of the device is suitable for the determination of Ser in pharmaceutical capsules and urine samples.