Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Assunto principal
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 575: 378-389, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27750134

RESUMO

Desiccation and re-flooding processes play a key role on hydrological features of non-perennial rivers. This study addresses the effects of these processes on the aquatic quality and unravels underlying biogeochemical processes of an intermittent river reach in southern Greece containing a spring-fed pool. Combined spatio-temporal sampling for physicochemical parameters, major ions and nutrients and high frequency automatic monitoring during a hydrological year (2010-2011) indicate that during the dry period, solute variation was controlled by "concentration" processes (i.e. evaporative concentration and high dissolved ion input from base flow sources). Metabolic and "concentration" processes appear intensified during desiccation and water temperature rise. Photosynthesis induced carbonate precipitation, while respiration increased with gradual desiccation, but did not cause carbonate dissolution. In certain cases, photosynthesis and respiration may have occurred simultaneously as a result of differing microhabitat metabolism within the same water body. However, during the entire desiccation cycle, autotrophic production exceeded respiration resulting in relatively high oxygen concentrations, even during the night. With increasing desiccation, a rise in nutrient assimilation occurred as well as ammonification and/or desorption of ammonium from sediments, with simultaneous loss of nitrate. During initial floods, flushing of carbonate phases was not significant. In contrast, initial flood events were characterized by the dissolution of very soluble salts, i.e. epsomite-type (MgSO4∗7H2O) and gypsum (CaSO4∗2H2O). Regarding sediment transport and nutrients, a 1000-times increase of suspended sediments was observed during re-flooding, while the nutrient quality degraded, particularly for N-species. Results of the current research may serve to better understand the links of hydrological and biogeochemical processes in non-perennial rivers and streams towards their efficient management and conservation.

2.
Environ Sci Technol ; 41(4): 1225-31, 2007 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17593723

RESUMO

A reach at the estuary of Krathis River in Greece was used to assess how in-stream processes alter its hydrologic and biogeochemical regime. Krathis River exhibited high annual flow variability and its transmission losses become significant, especially during the dry months. These transmission losses are enhanced in chemistry due to release of nutrients from river sediments. These fluxes are significant because they correspond to 11% of the dissolved inorganic nitrogen flux of the river. Release of nitrogen species was influenced by temperature, while release of phosphate was not because phosphate levels were below the equilibrium concentration. There is a significant amount of sediments with fine composition that create "hot spot" areas in the river reach. These sediments are mobilized during the first flush events in the fall carrying with them a significant load of nutrient and suspended matter to the coastal zone. The nutrient organic content of sediments was also significant and it was studied in terms of its mineralization capacity. The capacity for mineralization was influenced by soil moisture, exhibiting significant capacity even at moisture levels of 40%. Temporary rivers are sensitive ecosystems, vulnerable to climate changes. In-stream processes play a significant role in altering the hydrology and biogeochemistry of the water and its impacts to the coastal zone.


Assuntos
Rios/química , Sedimentos Geológicos/química , Grécia , Nitrogênio/análise , Fósforo/análise , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA