Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Physiol Plant ; 168(1): 27-37, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30684269

RESUMO

Plant tolerance against a combination of abiotic stresses is a complex phenomenon, which involves various mechanisms. Physiological and biochemical analyses of salinity (NaCl) and nickel (Ni) tolerance in two contrasting tomato genotypes were performed in a hydroponics experiment. The tomato genotypes selected were proved to be tolerant (Naqeeb) and sensitive (Nadir) to both salinity and Ni stress in our previous experiment. The tomato genotypes were exposed to combinations of NaCl (0, 75 and 150 mM) and Ni (0, 15, and 20 mg l-1 ) for 28 days. The results revealed that the tolerant and sensitive tomato genotypes showed similar response to NaCl and Ni stress; however, the level of response was significantly different in both genotypes. The tolerant tomato genotype showed less reduction in growth than the sensitive genotype against both NaCl and Ni stress. Root and shoot ionic analysis showed a decrease in Na and increase in K concentration by increasing Ni levels in the growth medium. Moreover, accumulation of Na and Ni in tissues showed a decrease in membrane stability index and an increase in malondialdehyde contents. The activity of superoxide dismutase, catalase, peroxidase and glutathione reductase under NaCl and Ni stress was significantly higher in the tolerant compared to the sensitive genotype. Enhanced activity of many antioxidant enzymes in Naqeeb under stress conditions is among the other mechanisms that enabled the genotype to better detoxify reactive oxygen species and therefore Naqeeb tolerated the stresses better than Nadir.


Assuntos
Níquel/farmacologia , Cloreto de Sódio/farmacologia , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/fisiologia , Estresse Fisiológico , Antioxidantes , Catalase , Clorofila , Genótipo , Glutationa Redutase , Malondialdeído , Peroxidase , Potássio/análise , Salinidade , Sódio/análise , Superóxido Dismutase
2.
Environ Sci Pollut Res Int ; 26(11): 10496-10514, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30835069

RESUMO

Nickel (Ni) is a ubiquitous and highly important heavy metal. At low levels, Ni plays an essential role in plants such as its role in urease, superoxide dismutase, methyl-coenzyme M reductase, hydrogenase, acetyl-coenzyme A synthase, and carbon monoxide dehydrogenase enzyme. Although its deficiency in crops is very uncommon, but in the past few years, many studies have demonstrated Ni deficiency symptoms in plants. On the other hand, high levels of applied Ni can provoke numerous toxic effects (such as biochemical, physiological, and morphological) in plant tissues. Most importantly, from an ecological and risk assessment point of view, this metal has narrow ranges of its essential, beneficial, and toxic concentrations to plants, which significantly vary with plant species. This implies that it is of great importance to monitor the levels of Ni in different environmental compartments from which it can enter plants. Additionally, several abiotic stresses (such as salinity and drought) have been reported to affect the biogeochemical behavior of Ni in the soil-plant system. Thus, it is also important to assess Ni behavior critically under different abiotic stresses, which can greatly affect its role being an essential or toxic element. This review summarizes and critically discusses data about sources, bioavailability, and adsorption/desorption of Ni in soil; its soil-plant transfer and effect on other competing ions; accumulation in different plant tissues; essential and toxic effects inside plants; and tolerance mechanisms adopted by plants under Ni stress.


Assuntos
Níquel/metabolismo , Plantas/metabolismo , Poluentes do Solo/metabolismo , Inativação Metabólica , Níquel/toxicidade , Plantas/química , Poluentes do Solo/toxicidade , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA