Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 129(18): 186802, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36374690

RESUMO

We present the first experimental evidence for the multifractality of a transport property at a topological phase transition. In particular, we show that conductance fluctuations display multifractality at the integer quantum Hall plateau-to-plateau transitions in high-mobility mesoscopic graphene devices. The multifractality gets rapidly suppressed as the chemical potential moves away from these critical points. Our combination of experimental study and multifractal analysis provides a novel method for probing the criticality of wave functions at phase transitions in mesoscopic systems, and quantum criticality in several condensed-matter systems.

2.
Phys Rev Lett ; 111(19): 197001, 2013 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-24266483

RESUMO

We probe the presence of long-range correlations in phase fluctuations by analyzing the higher-order spectrum of resistance fluctuations in ultrathin NbN superconducting films. The non-Gaussian component of resistance fluctuations is found to be sensitive to film thickness close to the transition, which allows us to distinguish between mean field and Berezinskii-Kosterlitz-Thouless (BKT) type superconducting transitions. The extent of non-Gaussianity was found to be bounded by the BKT and mean field transition temperatures and depends strongly on the roughness and structural inhomogeneity of the superconducting films. Our experiment outlines a novel fluctuation-based kinetic probe in detecting the nature of superconductivity in disordered low-dimensional materials.

3.
ACS Appl Mater Interfaces ; 9(23): 19462-19469, 2017 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-28084716

RESUMO

Band structure engineering is a powerful technique both for the design of new semiconductor materials and for imparting new functionalities to existing ones. In this article, we present a novel and versatile technique to achieve this by surface adsorption on low dimensional systems. As a specific example, we demonstrate, through detailed experiments and ab initio simulations, the controlled modification of band structure in ultrathin Te nanowires due to NO2 adsorption. Measurements of the temperature dependence of resistivity of single ultrathin Te nanowire field-effect transistor (FET) devices exposed to increasing amounts of NO2 reveal a gradual transition from a semiconducting to a metallic state. Gradual quenching of vibrational Raman modes of Te with increasing concentration of NO2 supports the appearance of a metallic state in NO2 adsorbed Te. Ab initio simulations attribute these observations to the appearance of midgap states in NO2 adsorbed Te nanowires. Our results provide fundamental insights into the effects of ambient on the electronic structures of low-dimensional materials and can be exploited for designing novel chemical sensors.

4.
ACS Appl Mater Interfaces ; 7(35): 19825-30, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26301696

RESUMO

One of the most interesting predicted applications of graphene-monolayer-based devices is as high-quality sensors. In this article, we show, through systematic experiments, a chemical vapor sensor based on the measurement of low-frequency resistance fluctuations of single-layer-graphene field-effect-transistor devices. The sensor has extremely high sensitivity, very high specificity, high fidelity, and fast response times. The performance of the device using this scheme of measurement (which uses resistance fluctuations as the detection parameter) is more than 2 orders of magnitude better than a detection scheme in which changes in the average value of the resistance is monitored. We propose a number-density-fluctuation-based model to explain the superior characteristics of a noise-measurement-based detection scheme presented in this article.

5.
Sci Rep ; 5: 16772, 2015 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-26608479

RESUMO

Detailed experimental and theoretical studies of the temperature dependence of the effect of different scattering mechanisms on electrical transport properties of graphene devices are presented. We find that for high mobility devices the transport properties are mainly governed by completely screened short range impurity scattering. On the other hand, for the low mobility devices transport properties are determined by both types of scattering potentials - long range due to ionized impurities and short range due to completely screened charged impurities. The results could be explained in the framework of Boltzmann transport equations involving the two independent scattering mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA