RESUMO
Plant growth-promoting rhizobacteria (PGPR) are beneficial microorganisms to develop microbial fertilizers. Biofertilizers can accelerate plant growth and enhance crop yields. The current research aimed to isolate and identify rhizobacterium with plant growth-promoting activity in the rhizospheric region of pistachio trees in arid and salty region of Iran. In the present study, 26 bacterial isolates were isolated from the rhizospheric region of the pistachio trees. Plant growth-promoting characteristics of isolated bacteria, including the ability to solubilize phosphate and zinc, produce hydrolyzing enzymes, and hydrogen cyanide (HCN), as well as synthesize indole-3-acetic acid (IAA) were evaluated through in vitro assays. Based on these activities, five multifunctional bacterial strains designated P1, P10, P11, P17, and P19 were then applied and their effect was studied on the growth and physiological properties of Pistacia vera L. seedlings by pot experiments under normal conditions. Finally, the most efficient strain has been identified by analysis of the 16S rRNA gene sequence. According to the results, all the isolated bacteria exhibited considerable plant growth-promoting properties. They could produce amylase (n = 26, 2 ± 0.00-13 ± 0.42 mm), lipase (n = 24, 2 ± 0.00-9 ± 0.23 mm), protease (n = 20, 1 ± 0.00-17 ± 0.0 mm), indole-3-acetic acid (n = 26, ranging from 5.05 ± 0.08 to 11.5 ± 0.11 µg/mL) and HCN (n = 24). Six isolates showed significant growth at 20% w/v NaCl. Inoculation of P1, P17, and P19 increased chlorophyll, carotenoid, and phenolic content in treated Pistacia vera L. seedlings. P1 and P11 inoculated plants showed an enhanced level of anthocyanin and proline. These most effective strains were catalase and Gram-positive bacterium and showed antibiotic sensitivity. They can consider as halotolerant PGPR, due to the growth in the presence of NaCl (20% w/v). Finally, P1 inoculated plants exhibited higher levels of sugar content. This strain showed the most similarity (99.92%-1322 bp) to Paenarthrobacter nitroguajacolicus based on 16S rRNA gene sequence. Based on the results, Paenarthrobacter nitroguajacolicus P1 with multiple PGPR can be applied as a promising candidate in the soil-Pistacia vera L. system to improve their productivity and health by increasing available nutrient content, improving photosynthetic parameters, and producing phytohormones and HCN.
Assuntos
Alphaproteobacteria , Pistacia , Fosfatos , Zinco , RNA Ribossômico 16S/genética , Cloreto de SódioRESUMO
Extracting high-yield, high-quality DNA from plant samples is challenging due to the presence of the cell wall, pigments, and some secondary metabolites. The main CTAB method, two of its modified protocols (beta-mercaptoethanol or ammonium acetate were eliminated), the modified Murray and Thompson method, and the Gene All kit were statistically compared based on the quantity and quality of the total DNA (tDNA) extracted from fresh and dried leaves of three medicinal herbs P. harmala, T. ramosissima, and P. reptans. The suitability of the tDNAs for molecular studies was evaluated by polymerase chain reaction (PCR) of the fragments of the internal transcribed spacer (ITS) in nuclear DNA and the trnL-F region in chloroplast DNA. Some significant differences were found between the tDNAs extracted by five extraction methods. With the exception of P. harmala, where the PCR of both the ITS fragments and the trnL-F region worked successfully in all DNA samples, but only the ITS fragments, not the chloroplast trnL-F region, were amplified in the DNA samples of T. ramosissima and P. reptans. The chloroplast trnL-F region was amplified only in DNA samples extracted from fresh and dried leaves of the three studied herbs using the commercial kit. Gene All kit, the main CTAB method, and its modified protocols were the less time-consuming protocols that yielded DNA suitable for downstream PCR vis-a-vis the modified Murray and Thompson method.
RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Complementary and alternative medicine has been increasingly used to treat chronic illnesses, such as diabetes mellitus. However, various limitations in terms of their application and efficacies exist. Furthermore, there is still much to be done to discover the right herbal medicine for diabetes. AIM OF THE STUDY: This paper aims to evaluate previous herbal studies on the management of diabetes mellitus, to address their strengths and weaknesses and propose a general framework for future studies. APPROACH AND METHODS: Data sources such as PubMed, ScienceDirect, Scopus, SpringerLink, and Wiley were searched, limited to Iran, using 36 search terms such as herbal, traditional, medicine, and phytopharmacy in combination with diabetes and related complications. Reviewed articles were evaluated regarding the use of botanical nomenclature and included information on (1) identity of plants and plant parts used, (2) the processing procedure, and (3) the extraction process. The main outcomes were extracted and then surveyed in terms of the efficacies of herbs in the management of diabetes mellitus. Then a comparative study was performed between Iranian and non-Iranian studies with respect to herbs best studied in Iran. RESULTS: Of the 82 herbs studied in Iran, only six herbs were endemic and 19 were studied in detail. Although most of the reviewed herbs were found to decrease the level of blood glucose (BG) and/or glycated hemoglobin (HbA1C) in both Iranian and non-Iranian studies, information on their pharmacological mechanisms is scarce. However, the level of HbA1C was measured in a limited number of clinical trials or animal studies. Available information on both short- and long-term use of studied herbs on diabetes related complications and functions of involved organs as well as comorbid depression and/or simultaneous changes in lifestyle is also insufficient. Furthermore, little or no information on their phytochemical, toxicological, and herb-drug interaction properties is available. It is worth noting that the efficacy of the reviewed herbs has been studied scarcely in both humans and animals regarding both Iranian and non-Iranian studies. A significant number of reviewed articles failed to cite the scientific name of herbs and include information on the processing procedure and the extraction process. CONCLUSIONS: Treatment of diabetes mellitus as a multifactorial disease using herbal medicines requires a comprehensive approach. In order to discover the right herbal medicine for the management of diabetes many other important factors than the levels of BG, HbA1C and insulin should be considered. According to our criteria, all the reviewed herbs suffered from inadequate investigation in human, animal and in vitro models in this respect, whereas they are worth investigating further. However, more research on endemic plants and the traditional history of herbal medicine is warranted. In our opinion, the pharmacological, toxicological, and phytochemical information should be obtained before clinical trials. Furthermore, information such as botanical scientific nomenclature, side effects, and toxicity will improve the quality and validity of publications in herbal research. In particular, designing a database covering all valid information about herbs and/or diseases will decrease unnecessary costs and increase the efficiency of research.