Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39125914

RESUMO

Multiple drug resistance (MDR) has gained pronounced attention among Enterobacterales. The transfer of multiple antimicrobial resistance genes, frequently carried on conjugative incompatibility F (IncF) plasmids and facilitating interspecies resistance transmission, has been linked to Salmonella spp. and E. coli in broilers. In Egypt, the growing resistance is exacerbated by the limited clinical efficacy of many antimicrobials. In this study, IncF groups were screened and characterized in drug-resistant Salmonella spp. and E. coli isolated from broilers. The antimicrobial resistance profile, PCR-based replicon typing of bacterial isolates pre- and post-plasmid curing, and IncF replicon allele sequence typing were investigated. Five isolates of E. coli (5/31; 16.13%) and Salmonella spp. (5/36; 13.89%) were pan-susceptible to the examined antimicrobial agents, and 85.07% of tested isolates were MDR and extensively drug-resistant (XDR). Twelve MDR and XDR E. coli and Salmonella spp. isolates were examined for the existence of IncF replicons (FII, FIA, and FIB). They shared resistance to ampicillin, ampicillin/sulbactam, amoxicillin/clavulanate, doxycycline, cefotaxime, and colistin. All isolates carried from one to two IncF replicons. The FII-FIA-FIB+ and FII-FIA+FIB- were the predominant replicon patterns. FIB was the most frequently detected replicon after plasmid curing. Three XDR E. coli isolates that were resistant to 12-14 antimicrobials carried a newly FIB replicon allele with four nucleotide substitutions: C99→A, G112→T, C113→T, and G114→A. These findings suggest that broilers are a significant reservoir of IncF replicons with highly divergent IncF-FIB plasmid incompatibility groups circulating among XDR Enterobacterales. Supporting these data with additional comprehensive epidemiological studies involving replicons other than the IncF can provide insights for implementing efficient policies to prevent the spreading of new replicons to humans.


Assuntos
Alelos , Galinhas , Farmacorresistência Bacteriana Múltipla , Infecções por Escherichia coli , Escherichia coli , Plasmídeos , Doenças das Aves Domésticas , Replicon , Animais , Galinhas/microbiologia , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Replicon/genética , Farmacorresistência Bacteriana Múltipla/genética , Plasmídeos/genética , Doenças das Aves Domésticas/microbiologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Salmonella/genética , Salmonella/efeitos dos fármacos
2.
BMC Vet Res ; 17(1): 136, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33789637

RESUMO

BACKGROUND: Streptococcus agalactiae (S. agalactiae) is a contagious pathogen of bovine mastitis. It has financial implications for the dairy cattle industry in certain areas of the world. Since antimicrobial resistance increases in dairy farms, natural antimicrobials from herbal origins and nanoparticles have been given more attention as an alternative therapy. Hence, this study reported the antimicrobial and antibiofilm potentials of cinnamon oil, silver nanoparticles (AgNPs), and their combination against multidrug-resistant (MDR) S. agalactiae recovered from clinical bovine mastitis in Egypt. RESULTS: Our findings revealed that 73% (146/200) of the examined milk samples collected from dairy cows with clinical mastitis were infected with Streptococci species. Of these, 9.59% (14/146) were identified as S. agalactiae and categorized as MDR. S. agalactiae isolates expressed four virulence genes (Hyl, cylE, scpB, and lmb) and demonstrated an ability to produce biofilms. Cinnamon oil showed high antimicrobial (MICs ≤0.063 µg /mL) and antibiofilm (MBIC50 = 4 µg/mL) potentials against planktonic and biofilms of S. agalactiae isolates, respectively. However, AgNPs showed reasonable antimicrobial (MICs ≤16 µg/mL) and relatively low antibiofilm (MBIC50 = 64 µg/mL) activities against screened isolates. Synergistic antimicrobial or additive antibiofilm interactions of cinnamon oil combined with AgNPs were reported for the first time. Scanning electron microscope (SEM) analysis revealed that biofilms of S. agalactiae isolates treated with cinnamon oil were more seriously damaged than observed in AgNPs cinnamon oil combination. Moreover, reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) showed that cinnamon oil exerted a remarkable down-regulation of pili biosynthesis genes (pilA and pilB) and their regulator (rogB) against S. agalactiae biofilms, meanwhile the AgNPs cinnamon oil combination demonstrated a lower efficacy. CONCLUSIONS: This is an in vitro preliminary approach that documented the antibiofilm potential of cinnamon oil and the inhibitory activity of cinnamon oil and its combination with AgNPs against MDR S. agalactiae recovered from clinical mastitis. Further in vivo studies should be carried out in animal models to provide evidence of concept for implementing these alternative candidates in the treatment of dairy farms infected by streptococcal mastitis in the future.


Assuntos
Nanopartículas Metálicas , Óleos Voláteis/farmacologia , Prata/farmacologia , Streptococcus agalactiae/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Bovinos , Cinnamomum zeylanicum/química , Egito , Feminino , Mastite Bovina/microbiologia , Leite/microbiologia , Infecções Estreptocócicas/veterinária , Fatores de Virulência/genética
3.
Open Vet J ; 14(1): 186-199, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38633173

RESUMO

Background: Bacillus cereus (B. cereus) biofilm is grown not only on medical devices but also on different substrata and is considered a potential hazard in the food industry. Quorum sensing plays a serious role in the synthesis of biofilm with its surrounding extracellular matrix enabling irreversible connection of the bacteria. Aim: The goal of the current investigation was to ascertain the prevalence, patterns of antimicrobial resistance, and capacity for B. cereus biofilm formation in meat and meat products in Egypt. Methods: In all, 150 meat and meat product samples were used in this study. For additional bacteriological analysis, the samples were moved to the Bacteriology Laboratory. Thereafter, the antimicrobial, antiquorum sensing, and antibiofilm potential of apple cider vinegar (ACV) on B. cereus were evaluated. Results: Out of 150 samples, 34 (22.67%) tested positive for B. cereus. According to tests for antimicrobial susceptibility, every B. cereus isolates tested positive for colistin and ampicillin but negative for ciprofloxacin and imipenem. The ability to form biofilms was present in all 12 multidrug-resistant B. cereus isolates (n = 12); of these, 6 (50%), 3 (25%), and 3 (25%) isolates were weak, moderate, and strong biofilm producers, respectively. It is noteworthy that the ACV demonstrated significant inhibitory effects on B. cereus isolates, with minimum inhibitory concentrations varying between 2 and 8 µg/ml. Furthermore, after exposing biofilm-producing B. cereus isolates to the minimum biofilm inhibitory concentrations 50 of 4 µg/ml, it demonstrated good antibiofilm activity (>50% reduction of biofilm formation). Strong biofilm producers had down-regulated biofilm genes (tasA and sipW) and their regulator (plcR) compared to the control group, according to reverse transcriptase quantitative polymerase chain reaction analysis. Conclusion: Our study is the first report, that spotlights the ACV activity against B. cereus biofilm and its consequence as a strong antibacterial and antibiofilm agent in the food industry and human health risk.


Assuntos
Anti-Infecciosos , Malus , Humanos , Animais , Bacillus cereus/genética , Ácido Acético/farmacologia , Carne/microbiologia , Anti-Infecciosos/farmacologia , Biofilmes
4.
Front Cell Infect Microbiol ; 14: 1318585, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562962

RESUMO

One of the most important emerging health problems is the increasing role of animals in the rapid global rise in resistance to last-resort antibiotics, such as carbapenems. However, there is limited information on the role of pet animals in harboring and spreading pandrug-resistant (PDR) carbapenemase-producing Enterobacterales (CPE), especially in Egypt. This cross-sectional study was conducted to screen for CPE in healthy and diseased pets using phenotypic and molecular methods and the NG-Test CARBA 5 immunochromatographic assay. Rectal swabs were collected from 62 dogs and 48 cats, incubated overnight in tryptic soy broth containing 10 µg of meropenem disc and subsequently cultured on MacConkey agar supplemented with meropenem (1 mg/L). Sixty-six isolates (60.6%), including 56 Klebsiella pneumoniae, seven Escherichia coli, and three K. oxytoca isolates, were confirmed to be carbapenem-resistant Enterobacterales (CRE) by the disc diffusion method, broth microdilution test, CNPt-direct, and PCR assay targeting carbapenemase genes. Forty-three (65.2%) dogs and 23 (34.8%) cats carried CPE. Of these, 35 (70.0%) were healthy (including 27 dogs and 8 cats) and 31 (52.5%) were diseased (including 16 dogs and 15 cats). bla OXA-181 was the most common gene detected (42/66, 63.6%), followed by bla IMP (40/66, 60.6%), bla OXA-48-like (29/66, 43.9%), bla KPC and bla VIM (20/66, 30.3% each), and bla NDM (17/66, 25.8%). The identified genotypes were bla KPC-2, bla IMP-1, bla VIM-1, bla NDM-1, and bla NDM-5. The CARBA 5 assay showed higher sensitivity and specificity for the detection of NDM, OXA and KPC than that for VIM and IMP genes. Antimicrobial resistance profiles of CRE isolates revealed 20 PDR, 30 extensively drug-resistant (XDR), and 16 multidrug-resistant (MDR) phenotypes. This study provides evidence of colonization with PDR CPE in dogs and cats. To manage the infection or colonization of pets in veterinary clinical settings, extended surveillance systems should be considered, and the use of critical antibiotics should be strictly controlled.


Assuntos
Doenças do Gato , Doenças do Cão , Gatos , Cães , Animais , Estudos Transversais , Meropeném , Egito , Testes de Sensibilidade Microbiana , Proteínas de Bactérias/genética , Proteínas de Bactérias/análise , beta-Lactamases/genética , beta-Lactamases/análise , Antibacterianos/farmacologia , Escherichia coli/genética
5.
Antibiotics (Basel) ; 12(10)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37887215

RESUMO

Pseudomonas aeruginosa is notorious for its ability to develop a high level of resistance to antimicrobial agents. Resistance-nodulation-division (RND) efflux pumps could mediate drug resistance in P. aeruginosa. The present study aimed to evaluate the antibacterial and anti-efflux activities of cinnamon essential oil either alone or combined with ciprofloxacin against drug resistant P. aeruginosa originated from human and animal sources. The results revealed that 73.91% of the examined samples were positive for P. aeruginosa; among them, 77.78% were of human source and 72.73% were recovered from animal samples. According to the antimicrobial resistance profile, 48.73% of the isolates were multidrug-resistant (MDR), 9.2% were extensive drug-resistant (XDR), and 0.84% were pan drug-resistant (PDR). The antimicrobial potential of cinnamon oil against eleven XDR and one PDR P. aeruginosa isolates was assessed by the agar well diffusion assay and broth microdilution technique. The results showed strong antibacterial activity of cinnamon oil against all tested P. aeruginosa isolates with inhibition zones' diameters ranging from 34 to 50 mm. Moreover, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of cinnamon oil against P. aeruginosa isolates ranged from 0.0562-0.225 µg/mL and 0.1125-0.225 µg/mL, respectively. The cinnamon oil was further used to evaluate its anti-efflux activity against drug-resistant P. aeruginosa by phenotypic and genotypic assays. The cartwheel test revealed diminished efflux pump activity post cinnamon oil exposure by two-fold indicating its reasonable impact. Moreover, the real-time quantitative polymerase chain reaction (RT-qPCR) results demonstrated a significant (p < 0.05) decrease in the expression levels of MexA and MexB genes of P. aeruginosa isolates treated with cinnamon oil when compared to the non-treated ones (fold changes values ranged from 0.4204-0.7474 for MexA and 0.2793-0.4118 for MexB). In conclusion, we suggested the therapeutic use of cinnamon oil as a promising antibacterial and anti-efflux agent against drug-resistant P. aeruginosa.

6.
Biology (Basel) ; 11(7)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-36101462

RESUMO

Among many bovine Mycoplasma species (spp.), Mycoplasma bovis is recognized as a significant causative agent of respiratory diseases in cattle. In recent years, resistant M. bovis isolates, especially to fluoroquinolones, have been reported globally as a result of the extensive usage of antimicrobials in the treatment of bovine pneumonia. Therefore, the aim of this study is to investigate the prevalence and antimicrobial susceptibility patterns of bovine Mycoplasma spp. isolated from the respiratory tracts of cattle in Egypt and to assess the fluoroquinolones resistance in the recovered mycoplasma isolates via broth microdilution and conventional PCR techniques. Conventional phenotypic methods identified 128 mycoplasma isolates (32%) from 400 different samples, with M. bovis being the predominant spp. (61%), followed by M. bovirhinis (15%). Of note, mycoplasma isolates were rarely isolated from total healthy lung tissues (7/55, 12.7%), but they were frequently isolated from pneumonic lungs (31/45, 68.9%). All the examined mycoplasma isolates (n = 76) were sensitive to tilmicosin, tylosin, tulathromycin, spiramycin, and spectinomycin (100% each), while 60.5% and 43.4% of the examined isolates had high minimum inhibitory concentration (MIC) values to enrofloxacin and doxycycline, respectively. Three and two mycoplasma isolates with high enrofloxacin MICs were confirmed to be M. bovis and M. bovirhinis, respectively, by PCR assays. All molecularly confirmed mycoplasma isolates (n = 5) were positive for the gyrA gene (100%); meanwhile, three isolates (60%) were positive for the parC gene. In conclusion, our findings revealed alarming resistance to enrofloxacin and doxycycline antibiotics; thus, antimicrobial usage must be restricted and molecular techniques can help in the rapid detection of the resistant strains.

7.
Front Microbiol ; 12: 738784, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899627

RESUMO

The emergence of extensive drug-resistant (XDR) Salmonella in livestock animals especially in poultry represents a serious public health and therapeutic challenge. Despite the wealth of information available on Salmonella resistance to various antimicrobials, there have been limited data on the genetic determinants of XDR Salmonella exhibiting co-resistance to ciprofloxacin (CIP) and tigecycline (TIG). This study aimed to determine the prevalence and serotype diversity of XDR Salmonella in poultry flocks and contact workers and to elucidate the genetic determinants involved in the co-resistance to CIP and TIG. Herein, 115 Salmonella enterica isolates of 35 serotypes were identified from sampled poultry (100/1210, 8.26%) and humans (15/375, 4.00%), with the most frequent serotype being Salmonella Typhimurium (26.96%). Twenty-nine (25.22%) Salmonella enterica isolates exhibited XDR patterns; 25 out of them (86.21%) showed CIP/TIG co-resistance. Exposure of CIP- and TIG-resistant isolates to the carbonyl cyanide 3-chlorophenylhydrazone (CCCP) efflux pump inhibitor resulted in an obvious reduction in their minimum inhibitory concentrations (MICs) values and restored the susceptibility to CIP and TIG in 17.24% (5/29) and 92% (23/25) of the isolates, respectively. Molecular analysis revealed that 89.66% of the isolates contained two to six plasmid-mediated quinolone resistance genes with the predominance of qepA gene (89.66%). Mutations in the gyrA gene were detected at codon S83 (34.62%) or D87 (30.77%) or both (34.62%) in 89.66% of XDR Salmonella. The tet(A) and tet(X4) genes were detected in 100% and 3.45% of the XDR isolates, respectively. Twelve TIG-resistant XDR Salmonella had point mutations at codons 120, 121, and 181 in the tet(A) interdomain loop region. All CIP and TIG co-resistant XDR Salmonella overexpressed ramA gene; 17 (68%) out of them harbored 4-bp deletion in the ramR binding region (T-288/A-285). However, four CIP/TIG co-resistant isolates overexpressed the oqxB gene. In conclusion, the emergence of XDR S. enterica exhibiting CIP/TIG co-resistance in poultry and humans with no previous exposure to TIG warrants an urgent need to reduce the unnecessary antimicrobial use in poultry farms in Egypt.

8.
Antibiotics (Basel) ; 10(11)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34827280

RESUMO

In recent times, resistant foodborne pathogens, especially of the Campylobacter species, have created several global crises. These crises have been compounded due to the evolution of multidrug-resistant (MDR) bacterial pathogens and the emergence of extensively drug-resistant (XDR) and pan-drug-resistant (PDR) strains. Therefore, this study aimed to investigate the development of resistance and the existence of both XDR and PDR among Campylobacter isolates. Moreover, we explored the use of the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique for the detection of fluoroquinolone (FQ)-resistant Campylobacter isolates. A total of 120 Campylobacter isolates were identified depending on both phenotypic and genotypic methods. Of note, cefoxitin and imipenem were the most effective drugs against the investigated Campylobacter isolates. Interestingly, the majority of our isolates (75%) were MDR. Unfortunately, both XDR and PDR isolates were detected in our study with prevalence rates of 20.8% and 4.2%, respectively. All FQ-resistant isolates with ciprofloxacin minimum inhibitory concentrations ≥4 µg/mL were confirmed by the genetic detection of gyrA chromosomal mutation via substitution of threonine at position 86 to isoleucine (Thr-86-to-Ile) using the PCR-RFLP technique. Herein, PCR-RFLP was a more practical and less expensive method used for the detection of FQ resistant isolates. In conclusion, we introduced a fast genetic method for the identification of FQ-resistant isolates to avoid treatment failure through the proper description of antimicrobials.

9.
Animals (Basel) ; 11(7)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206268

RESUMO

Mastitis remains a serious problem for dairy animals. The misappropriation of antimicrobial agents helps accelerate resistance, which poses a serious challenge in controlling environmental S. uberis infection. Here, we study the virulence attributes, antimicrobial and biocide resistance, and epidemiological typing of S. uberis recovered from bovine clinical mastitis in dairy farms of diverse hygienic interventions in Egypt. The overall S. uberis infection rate was 20.59%; all were multidrug-resistant (MDR). The sua gene was the most frequent virulence gene (42.02%), followed by pauA (40.57%), cfu (21.73%), skc (20.28%), and opp (11.59%). The erm(B) gene served as the predominant antimicrobial-resistant gene (75.36%), followed by fexA (52.63%) and tet(M), blaZ, and aac(6')aph(2″) genes (46.38% each). Of note, 79.71%, 78.26%, and 18.84% of S. uberis isolates harbored qacED1, qacC/D, and qacA/B genes, respectively. All analyzed isolates were S. uberis type I by their unique RFLP-PCR pattern. In conclusion, the sustained presence of pauA and sua genes throughout the investigated farms contributes to a better understanding of the bacterium's pathogenicity. Furthermore, MDR coupled with the existence of biocide resistance genes indicates the importance of S. uberis surveillance and the prudent use of antimicrobials in veterinary clinical medicine to avoid the dissemination of antimicrobial resistance.

10.
Transbound Emerg Dis ; 67(6): 2455-2466, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32304282

RESUMO

Strangles displays a major challenge to veterinary medicine worldwide. However, no data on Streptococcus equi subsp. equi (S. equi) M protein alleles have been reported so far from Arabian horses. We report here for the first time the S. equi SeM alleles causing strangles in Arabian horses, and the associated risk factors for the disease. Duplicate samples from one hundred Arabian horses with acute strangles in confirmed outbreaks and sporadic cases were analysed by phenotypic methods and multiplex polymerase chain reaction (PCR) targeting streptokinase precursor, seeI and sodA genes. PCR and sequencing of S. equi SeM gene were employed for strains typing, and the four superantigens were determined among the allelic variants. Direct-sample PCR confirmed and highly positively correlated (r = .85) with the phenotypic results, and detected S. equi in five samples more than the conventional culture. A combination of multiplex PCR from samples and culture could successfully identify S. equi (92%), S. zooepidemicus (5%) and S. equisimilis (3%). SeM typing demonstrated five SeM alleles, including four previously unidentified alleles that were deposited in the PubMLST-SeM database. SeM-139 and SeM-141 are related to some strains that were recently recovered from donkeys in China. SeM-140 and SeM-199 are related to a group of alleles from horses in Europe. Variation in the presence of seeM, seeH and seeL superantigens was found across the four novel alleles without interference with the severity of strangles and clinical presentation seen in different outbreaks. Horse age was the most important factor in developing strangles, followed by seasonality and the diagnosis of strangles in the previous year. These new findings comprise a significant contribution to the horse industry through the identification of novel S. equi SeM types that may bolster measures for strangles control as the identified SeM alleles will certainly help in the development of SeM-containing vaccine.


Assuntos
Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Transporte/genética , Surtos de Doenças/veterinária , Doenças dos Cavalos/microbiologia , Infecções Estreptocócicas/veterinária , Streptococcus equi/imunologia , Superantígenos/genética , Alelos , Animais , Egito/epidemiologia , Variação Genética , Técnicas de Genotipagem/veterinária , Doenças dos Cavalos/epidemiologia , Doenças dos Cavalos/prevenção & controle , Cavalos , Reação em Cadeia da Polimerase Multiplex/veterinária , Filogenia , Fatores de Risco , Análise de Sequência de DNA/veterinária , Infecções Estreptocócicas/epidemiologia , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/prevenção & controle , Streptococcus/genética , Streptococcus/imunologia , Streptococcus/isolamento & purificação , Streptococcus equi/genética , Streptococcus equi/isolamento & purificação
11.
Animals (Basel) ; 10(11)2020 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-33171625

RESUMO

Campylobacter species are common commensals in the gastrointestinal tract of livestock animals; thus, animal-to-human transmission occurs frequently. We investigated for the first time, class 1 integrons and associated gene cassettes among pan drug-resistant (PDR), extensively drug-resistant (XDR), and multidrug-resistant (MDR) Campylobacter species isolated from livestock animals and humans in Egypt. Campylobacter species were detected in 58.11% of the analyzed chicken samples represented as 67.53% Campylobacter jejuni(C. jejuni) and 32.47% Campylobacter coli (C. coli). C. jejuni isolates were reported in 51.42%, 74.28%, and 66.67% of examined minced meat, raw milk, and human stool samples, respectively. Variable antimicrobial resistance phenotypes; PDR (2.55%), XDR (68.94%), and MDR (28.5%) campylobacters were reported. Molecular analysis revealed that 97.36% of examined campylobacters were integrase gene-positive; all harbored the class 1 integrons, except one possessed an empty integron structure. DNA sequence analysis revealed the predominance of aadA (81.08%) and dfrA (67.56%) alleles accounting for resistance to aminoglycosides and trimethoprim, respectively. This is the first report of aacC5-aadA7Δ4 gene cassette array and a putative phage tail tape measure protein on class 1 integrons of Campylobacter isolates. Evidence from this study showed the possibility of Campylobacter-bacteriophage interactions and treatment failure in animals and humans due to horizontal gene transfer mediated by class 1 integrons.

12.
Eur Rev Med Pharmacol Sci ; 24(20): 10902-10912, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33155254

RESUMO

The world will never be the same after the current COVID-19 pandemic. We may have to live with the coronavirus for a long time. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has resulted in a major burden on the global health system and economy. This report describes the current COVID-19 landscape and its socioeconomic implications. Despite the concerns for second waves of infection, gradual lifting of lockdown restrictions has occurred worldwide to relieve economic pressures and likely contributes towards possibly surging of outbreak although region wise variation exists due to several other biological factors, such as testing capacity and basic healthcare facilities among susceptible population within that region. Different prediction models have been put forth to forecast the spread of the current outbreak. However, it is challenging to perceive the precise changes happening in the real world as every time dynamics differ same as other epidemics cannot possibly be exactly superimposed to COVID-19. Currently, to decrypt the conundrum for effective antiviral drug against SARS-CoV-2 is in full swing. Due to high rate of mortality and it expeditiously spread is it decisive to understand the biological properties, clinical characteristics, epidemiology, evolution, pathogenesis for vaccine development and pathogenicity studies against the viral curb. Instant diagnostic and adequate therapeutics serve as a major intervention for the management of pandemic containment. Our study aims to analyze the impact of current measures and to suggest appropriate administrative strategic planning rather than to make somewhat authentic prediction in relation to the current scenario. Our predictive analysis study should be helpful against prevention, cure and control of the current outbreak of COVID-19 till the availability of cure or vaccine.


Assuntos
Infecções por Coronavirus/epidemiologia , Pandemias/economia , Pneumonia Viral/epidemiologia , Betacoronavirus/patogenicidade , COVID-19 , Infecções por Coronavirus/economia , Desenvolvimento de Medicamentos , Diagnóstico Precoce , Saúde Global , Humanos , Pneumonia Viral/economia , SARS-CoV-2
13.
Animals (Basel) ; 11(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33375019

RESUMO

Campylobacter jejuni is the leading cause of foodborne bacterial gastroenteritis in humans worldwide. Contaminated chickens and their products are the main sources of human campylobacteriosis. Therefore, this study aimed to detect the genotypic and virulence genes' profiles of multi-drug resistant (MDR) C. jejuni isolates and to assess the effects of sub-inhibitory concentrations (SICs) of eugenol and beta-resorcylic acid on the virulence of avian MDR C. jejuni isolates. These isolates were clustered together with the human isolates via enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR) fingerprinting. A total of 345 samples were collected from human stool (100) and different chicken (245) samples in Sharkia Governorate, Egypt. Conventional phenotypic methods identified 113 isolates (32.8%) as C. jejuni, and all C. jejuni isolates were MDR and resistant to erythromycin and ampicillin. The genes virB11, wlaN, and flaA were detected in 52%, 36% and 100% strains, respectively. ERIC-PCR yielded 14 profiles and five main clusters. Interestingly, human and chicken C. jejuni isolates were clustered together in ERIC-PCR clusters II-V, which confirmed the genetic relatedness between the isolates from both origins. Beta-resorcylic acid and eugenol inhibited the invasion of C. jejuni isolates to chicken intestinal cells by 41.66-38.19% and 31.94-29.16%, respectively, and minimized the transcription of flaA, virB11, and wlaN genes in the tested isolates by real-time quantitative reverse transcription PCR (qRT-PCR). In essence, eugenol and beta-resorcylic acid are promising natural antimicrobials for minimizing the virulence of MDR C. jejuni in chickens, thereby managing human campylobacteriosis.

14.
Microb Drug Resist ; 25(2): 203-211, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30277840

RESUMO

This study aimed to investigate how efflux pump activity contributes to high fluoroquinolone (FQ) resistance in Campylobacter jejuni and Campylobacter coli isolates and to evaluate the modulatory effects of α-tocopherol and aspirin on FQ phenotypic resistance profiles. Minimum inhibitory concentration (MIC) values were obtained for different FQ agents following exposure to different efflux pump inhibitors (EPIs), including PaßN (50 µg/mL), which targets the cmeABC efflux system, and chlorpromazine (45 µg/mL) and verapamil (120 µg/mL), which target the MFS efflux system. The modulatory effects of aspirin (100 and 200 µg/mL) and α-tocopherol (4 and 10 µg/mL) on FQ resistance profiles were examined. PaßN had no effect on the MIC values of all FQ agents, while MFS efflux system inhibitors reduced the resistance level of different FQ agents and achieved an effect nearly comparable with that of α-tocopherol (10 µg/mL). Aspirin exerted a dose-dependent excitatory effect on phenotypic resistance profiles, and this may raise concerns about its usage in both veterinary and clinical settings. While an efflux system other than cmeABC may play a role in FQ resistance in Campylobacter species, lipophilic substances may represent a new approach for controlling efflux pump activities.


Assuntos
Antibacterianos/farmacologia , Aspirina/farmacologia , Campylobacter coli/efeitos dos fármacos , Campylobacter jejuni/efeitos dos fármacos , Proteínas de Transporte/antagonistas & inibidores , Farmacorresistência Bacteriana/efeitos dos fármacos , Fluoroquinolonas/farmacologia , alfa-Tocoferol/farmacologia , Animais , Galinhas , Testes de Sensibilidade Microbiana
15.
J Infect Dev Ctries ; 10(8): 807-13, 2016 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-27580325

RESUMO

INTRODUCTION: Avian mycoplasmas impose a significant economic burden to the poultry industry. In recent years, macrolide-resistant Mycoplasma gallisepticum have occasionally been encountered in Egypt. METHODOLOGY: This study was designed to document the involvement of macrolide-resistant M. gallisepticum in respiratory organs of chickens suffering respiratory problems. Concurrently, an exhaustive molecular characterization of the intrinsic resistance of recovered isolates to macrolides was done. RESULTS: Of 120 chickens showing respiratory problems, 14 (11.67%) M. gallisepticum were isolated and genetically identified; 8 of them were recovered from air sacs, 4 from lungs, and 2 from tracheas. Broth microdilution of all M. gallisepticum isolates showed various degrees of minimum inhibitory concentrations (MICs) against macrolides: erythromycin (0.25-32 µg/mL), tylosin (0.0625-4 µg/mL), and tiamulin (0.031-2 µg/mL). Nucleotide sequencing of domain V (peptidyl transferase region) of the 23S rRNA gene of macrolide-resistant M. gallisepticum isolates revealed transition mutations at positions 2068 and 2069 (corresponding to 2058 and 2059 in Escherichia coli numbering) in an isolate and at position 2067 (corresponding to 2057 in E. coli numbering) in three isolates as hot spots for macrolide resistance. Surprisingly, a transversion mutation at position 2621 (corresponding to 2611 in E. coli numbering) was reported in one of the recovered isolates as a first report. CONCLUSION: Generation of new mutations is evidence for persistence of M. gallisepticum despite macrolide treatment. Periodic surveys to monitor for the possible appearance of resistant strains are recommended.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Macrolídeos/farmacologia , Mycoplasma gallisepticum/efeitos dos fármacos , Mycoplasma gallisepticum/genética , Mutação Puntual , RNA Ribossômico 23S/genética , Animais , Galinhas , Egito , Testes de Sensibilidade Microbiana , Infecções por Mycoplasma/microbiologia , Infecções por Mycoplasma/veterinária , Doenças das Aves Domésticas/microbiologia , Sistema Respiratório/microbiologia , Infecções Respiratórias/microbiologia , Infecções Respiratórias/veterinária , Análise de Sequência de DNA
16.
Vector Borne Zoonotic Dis ; 15(12): 713-7, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26579615

RESUMO

The public health importance of the genus Campylobacter is attributed to several species causing diarrhea in consumers. Poultry and their meat are considered the most important sources of human campylobacteriosis. In this study, 287 samples from chicken (131 cloacal swabs, 39 chicken skin, 78 chicken meat, and 39 cecal parts) obtained from retail outlets as well as 246 stool swabs from gastroenteritis patients were examined. A representative number of the biochemically identified Campylobacter jejuni isolates were identified by real-time PCR, confirming the identification of the isolates as C. jejuni. Genotyping of the examined isolates (n = 31) by enterobacterial repetitive intergenic consensus PCR (ERIC-PCR) revealed a high discriminatory index of ERIC-PCR (D = 0.948), dividing C. jejuni isolates of chicken and human origins into 18 profiles and four clusters. The 18 profiles obtained indicated the heterogeneity of C. jejuni. Dendrogram analysis showed that four clusters were generated; all human isolates fell into clusters I and III. These observations further support the existence of a genetic relationship between human and poultry isolates examined in the present study. In conclusion, the results obtained support the speculation that poultry and poultry meat have an important role as sources of infection in the acquisition of Campylobacter infection in humans.


Assuntos
Infecções por Campylobacter/microbiologia , Campylobacter jejuni/genética , Galinhas/microbiologia , Doenças das Aves Domésticas/microbiologia , Animais , Infecções por Campylobacter/epidemiologia , Campylobacter jejuni/isolamento & purificação , Análise por Conglomerados , Sequência Consenso/genética , DNA Intergênico/genética , Egito/epidemiologia , Enterobacteriaceae/genética , Genótipo , Humanos , Aves Domésticas/microbiologia , Doenças das Aves Domésticas/epidemiologia , Reação em Cadeia da Polimerase em Tempo Real , Sequências Repetitivas de Ácido Nucleico/genética , Zoonoses
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA