Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 105(16-17): 6199-6213, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34410439

RESUMO

Propionic acid is an important organic acid with wide industrial applications, especially in the food industry. It is currently produced from petrochemicals via chemical routes. Increasing concerns about greenhouse gas emissions from fossil fuels and a growing consumer preference for bio-based products have led to interest in fermentative production of propionic acid, but it is not yet competitive with chemical production. To improve the economic feasibility and sustainability of bio-propionic acid, fermentation performance in terms of concentration, yield, and productivity must be improved and the cost of raw materials must be reduced. These goals require robust microbial producers and inexpensive renewable feedstocks, so the present review focuses on bacterial producers of propionic acid and promising sources of substrates as carbon sources. Emphasis is placed on assessing the capacity of propionibacteria and the various approaches pursued in an effort to improve their performance through metabolic engineering. A wide range of substrates employed in propionic acid fermentation is analyzed with particular interest in the prospects of inexpensive renewable feedstocks, such as cellulosic biomass and industrial residues, to produce cost-competitive bio-propionic acid. KEY POINTS: • Fermentative propionic acid production emerges as competitor to chemical synthesis. • Various bacteria synthesize propionic acid, but propionibacteria are the best producers. • Biomass substrates hold promise to reduce propionic acid fermentation cost.


Assuntos
Propionatos , Propionibacterium , Fermentação , Engenharia Metabólica
2.
Appl Microbiol Biotechnol ; 104(22): 9619-9629, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33047167

RESUMO

Propionic acid, a widely used food preservative and intermediate in the manufacture of various chemicals, is currently produced from petroleum-based chemicals, raising concerns about its long-term sustainability. A key way to make propionic acid more sustainable is through fermentation of low-cost renewable and inedible sugar sources, such as lignocellulosic biomass. To this end, we utilized the cellulosic hydrolysate of sweet sorghum bagasse (SSB), a residue from a promising biomass source that can be cultivated around the world, for fermentative propionic acid production using Propionibacterium freudenreichii. In serum bottles, SSB hydrolysate supported a higher propionic acid yield than glucose (0.51 vs. 0.44 g/g, respectively), which can be attributed to the presence of additional nutrients in the hydrolysate enhancing propionic acid biosynthesis and the pH buffering capacity of the hydrolysate. Additionally, SSB hydrolysate supported better cell growth kinetics and higher tolerance to product inhibition by P. freudenreichii. The yield was further improved by co-fermenting glycerol, a renewable byproduct of the biodiesel industry, reaching up to 0.59 g/g, whereas volumetric productivity was enhanced by running the fermentation with high cell density inoculum. In the bioreactor, although the yield was slightly lower than in serum bottles (0.45 g/g), higher final concentration and overall productivity of propionic acid were achieved. Compared to glucose (this study) and hydrolysates from other biomass species (literature), use of SSB hydrolysate as a renewable glucose source resulted in comparable or even higher propionic acid yields. KEY POINTS: • Propionic acid yield and cell growth were higher in SSB hydrolysate than glucose. • The yield was enhanced by co-fermenting SSB hydrolysate and glycerol. • The productivity was enhanced under high cell density fermentation conditions. • SSB hydrolysate is equivalent or superior to other reported hydrolysates.


Assuntos
Propionatos , Propionibacterium freudenreichii , Sorghum , Celulose , Fermentação , Propionibacterium
3.
Appl Microbiol Biotechnol ; 104(1): 161-171, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31754764

RESUMO

Laminarin is an abundant glucose polymer used as an energy reserve by micro- and macroalgae. Bacteria digest and consume laminarin with laminarinases. Their genomes frequently contain multiple homologs; however, the biological role for this replication remains unclear. We investigated the four laminarinases of glycoside hydrolase families GH16 and GH17 from the marine bacterium Vibrio breoganii 1C10, which can use laminarin as its sole carbon source. All four laminarinases employ an endolytic mechanism and specifically cleave the ß-1,3-glycosidic bond. Two primarily produce low-molecular weight laminarin oligomers (DP 3-4) whereas the others primarily produce high-molecular weight oligomers (DP > 8), which suggests that these enzymes sequentially degrade laminarin. The results from this work provide an overview of the laminarinases from a single marine bacterium and also provide insights regarding how multiple laminarinases are used to degrade laminarin.


Assuntos
Proteínas de Bactérias/metabolismo , Glucanos/metabolismo , Glicosídeo Hidrolases/metabolismo , Vibrio/enzimologia , Proteínas de Bactérias/genética , Escherichia coli , Expressão Gênica , Glicosídeo Hidrolases/genética , Especificidade por Substrato , Vibrio/genética
4.
Metab Eng ; 27: 46-56, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25447642

RESUMO

Propionibacterium freudenreichii subsp. shermanii naturally forms propionic acid as the main fermentation product with acetate and succinate as two major by-products. In this study, overexpressing the native propionyl-CoA:succinate CoA transferase (CoAT) in P. shermanii was investigated to evaluate its effects on propionic acid fermentation with glucose, glycerol, and their mixtures as carbon source. In general, the mutant produced more propionic acid, with up to 10% increase in yield (0.62 vs. 0.56g/g) and 46% increase in productivity (0.41 vs. 0.28g/Lh), depending on the fermentation conditions. The mutant also produced less acetate and succinate, with the ratios of propionate to acetate (P/A) and succinate (P/S) in the final product increased 50% and 23%, respectively, in the co-fermentation of glucose/glycerol. Metabolic flux analysis elucidated that CoAT overexpression diverted more carbon fluxes toward propionic acid, resulting in higher propionic acid purity and a preference for glycerol over glucose as carbon source.


Assuntos
Coenzima A-Transferases/metabolismo , Engenharia Metabólica , Propionatos/metabolismo , Propionibacterium/enzimologia , Coenzima A-Transferases/genética , Fermentação/fisiologia , Glucose/metabolismo , Glicerol/metabolismo , Propionibacterium/genética
5.
J Biosci Bioeng ; 129(1): 104-109, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31400993

RESUMO

Succinic acid, an important intermediate in the manufacture of plastics and other commodity and specialty chemicals, is currently made primarily from petroleum. We attempted to biosynthesize succinic acid through microbial fermentation of cellulosic sugars derived from the bagasse of sweet sorghum, a renewable feedstock that can grow in a wide range of climates around the world. We investigated pretreating sweet sorghum bagasse (SSB) with concentrated phosphoric acid at mild conditions (40-85°C) at various residence times and biomass concentrations. We then subjected the pretreated SSB to enzymatic hydrolysis with a commercial cellulase to release glucose. The highest glucose yield was obtained when SSB was pretreated at 50°C for 43 min at 130 g/L biomass concentration on dry basis. Fermentation was carried out with Actinobacillus succinogenes 130Z, which readily converted 29.2 g/L of cellulosic glucose to 17.8 g/L of succinic acid in a 3.5-L bioreactor sparged with CO2 at a rate of 0.5 vvm, thus reducing the carbon footprint of the process. Overall, we demonstrated, for the first time, the use of SSB for production of succinic acid using practices that lower energy use, future equipment cost, waste generation, and carbon footprint.


Assuntos
Actinobacillus/metabolismo , Celulose/metabolismo , Sorghum/microbiologia , Ácido Succínico/metabolismo , Actinobacillus/crescimento & desenvolvimento , Biocatálise , Biomassa , Reatores Biológicos/microbiologia , Celulase/química , Celulose/química , Fermentação , Hidrólise , Sorghum/química , Ácido Succínico/química
6.
Sci Rep ; 8(1): 609, 2018 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-29330542

RESUMO

Catabolite repression refers to the process where the metabolism of one sugar represses the genes involved in metabolizing another sugar. While glucose provides the canonical example, many other sugars are also known to induce catabolite repression. However, less is known about the mechanism for catabolite repression by these non-glucose sugars. In this work, we investigated the mechanism of catabolite repression in the bacterium Escherichia coli during growth on lactose, L-arabinose, and D-xylose. The metabolism of these sugars is regulated in a hierarchical manner, where lactose is the preferred sugar, followed by L-arabinose, and then D-xylose. Previously, the preferential utilization of L-arabinose over D-xylose was found to result from transcriptional crosstalk. However, others have proposed that cAMP governs the hierarchical regulation of many non-glucose sugars. We investigated whether lactose-induced repression of L-arabinose and D-xylose gene expression is due to transcriptional crosstalk or cAMP. Our results demonstrate that it is due to cAMP and not transcriptional crosstalk. In addition, we found that repression is reciprocal, where both L-arabinose and D-xylose also repress the lactose gene expression, albeit to a lesser extent and also through a mechanism involving cAMP. Collectively, the results further our understanding of metabolism during growth on multiple sugars.


Assuntos
Meios de Cultura/metabolismo , Proteínas de Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Arabinose/metabolismo , Repressão Catabólica , AMP Cíclico/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Lactose/metabolismo , Xilose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA