Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Phys Chem Chem Phys ; 25(20): 14324-14333, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37183591

RESUMO

According to the World Health Organization, the number of cancers (all cancers, both sexes, all ages and worldwide) in 2020 reached a total of 19 292 789 new cases leading to 9 958 133 deaths during the same period. Many cancers could be cured if detected early. Preventing cancer and detecting it early are two essential strategies for controlling this pathology. For this purpose, several strategies have been described for imaging cancer cells. One of them is based on the use of carbon nanoparticles called carbon dots, tools of physical chemistry. The literature describes that cancer cells can be imaged using carbon dots obtained from folic acid and that the in cellulo observed photoluminescence probably results from the interaction of these nanoparticles with the folic acid-receptor, a cell surface protein overexpressed in many malignant cells. However, this interaction has never been directly demonstrated yet. We investigated it, for the first time, using (i) freshly synthesized and fully characterized carbon dots, (ii) folate binding protein, a folic acid-receptor model protein and (iii) fluorescence spectroscopy and isothermal titration calorimetry, two powerful methods for detecting molecular interactions. Our results even highlight a selective interaction between these carbon made nano-objects and their biological target.


Assuntos
Nanopartículas , Pontos Quânticos , Humanos , Ácido Fólico/química , Carbono/química , Células HeLa , Nanopartículas/química , Pontos Quânticos/química
2.
Environ Res ; 232: 116232, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37263471

RESUMO

Biochar-supported nanocatalysts emerged as unique materials for environmental remediation. Herein, sugarcane pulp bagasse (SCPB) was wet-impregnated with Cu(NO3)23H2O and Ni(NO3)26H2O, then pyrolyzed at 500 °C, under N2, for 1 h. We specifically focused on sugarcane pulp instead of SCB and biochar materials. The metal nitrate to biomass ratio was set at 0.5, 1, and 2 mmol/g, with Cu/Ni initial ratio = 1. The process provided hierarchically structured porous biochar, topped with evenly dispersed 40 nm-sized CuNi alloy nanoparticles (SCPBB@CuNi). The biochar exhibited an unusual fishing net-like structure induced by nickel, with slits having a length in the 3-12 µm range. Such a fishing net-like porous structure was obtained without any harsh acidic or basic treatment of the biomass. It was induced, during pyrolysis, by the nanocatalysts or their precursors. The CuNi nanoparticles form true alloy as proved by XRD, and are prone to agglomeration at high initial metal nitrate concentration (2 mmol/g). Stepwise metal loading was probed by XPS versus the initial metal nitrate concentration. This is also reflected in the thermal gravimetric analyses. The SCPBB@CuNi/H2O2 (catalyst dose: 0.25 g/L) system served for the catalyzed removal of Malachite Green (MG), Methylene Blue (MB), and Methyl Orange (MO) dyes (concentration = 0.01 mmol/L). Both single and mixed dye solutions were treated in this advanced oxidation process (AOP). The dyes were removed in less than 30 min for MG and 3 h for MB, respectively, but 8 h for MO, therefore showing selectivity for the degradation of MG, under optimized degradation conditions. The catalysts could be collected with a magnet and reused three times, without any significant loss of activity (∼85%). AOP conditions did not induce any nanocatalyst leaching. To sum up, we provide a simple wet impregnation route that permitted to design highly active Fenton-like biochar@CuNi composite catalyst for the degradation of organic pollutants, under daylight conditions.


Assuntos
Nanopartículas , Saccharum , Peróxido de Hidrogênio/química , Corantes , Nitratos , Ligas
3.
Environ Res ; 216(Pt 2): 114569, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36244439

RESUMO

Maghemite (γ-Fe2O3) nanoparticles (MNPs) were functionalized with 3-aminopropyltriethoxysilane (APTES) to give APTES@Fe2O3 (AMNP) which was then reacted with diethylenetriamine-pentaacetic acid (DTPA) to give a nanohybrid DTPA-APTES@Fe2O3 (DAMNP). Nano-isothermal titration calorimetry shows that DTPA complexation with uranyl ions in water is exothermic and has a stoichiometry of two DTPA to three uranyl ions. Density functional theory calculations indicate the possibility of several complexes between DTPA and UO22+ with different stoichiometries. Interactions between uranyl ions and DAMNP functional groups are revealed by X-photoelectron and Fourier transform infrared spectroscopies. Spherical aberration-corrected Scanning Transmission Electron Microscopy visualizes uranium on the particle surface. Adsorbent performance metrics were evaluated by batch adsorption studies under different conditions of pH, initial uranium concentration and contact time, and the results expressed in terms of equilibrium adsorption capacities (qe) and partition coefficients (PC). By either criterion, performance increases from MNP to AMNP to DAMNP, with the maximum uptake at pH 5.5 in all cases: MNP, qe = 63 mg g-1, PC = 127 mg g-1 mM-1; AMNP, qe = 165 mg g-1, PC = 584 mg g-1 mM-1; DAMNP, qe = 249 mg g-1, PC = 2318 mg g-1 mM-1 (at 25 °C; initial U concentration 0.63 mM; 5 mg adsorbent in 10 mL of solution; contact time, 3 h). The pH maximum is related to the predominance of mono- and di-cationic uranium species. Uptake by DAMNPs follows a pseudo-first-order or pseudo-second-order kinetic model and fits a variety of adsorption models. The maximum adsorption capacity for DAMNPs is higher than for other functionalized magnetic nanohybrids. This adsorbent can be regenerated and recycled for at least 10 cycles with less than 10% loss in activity, and shows high selectivity. These findings suggest that DAMNP could be a promising adsorbent for the recovery of uranium from nuclear wastewaters.


Assuntos
Urânio , Águas Residuárias , Adsorção , Águas Residuárias/química , Urânio/análise , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Cátions , Fenômenos Magnéticos , Nanopartículas Magnéticas de Óxido de Ferro , Ácido Pentético , Concentração de Íons de Hidrogênio
4.
Phys Chem Chem Phys ; 24(29): 17654-17664, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35834214

RESUMO

Among the photocatalysts which could be used for converting solar energy, polyoxometalates are often regarded as ideal candidates because of their remarkable performances in photocatalytic water splitting and photodegradation of pollutants. Nonetheless, these polyanions are only capable of absorbing UV light, unless coupled to a visible-light photosensitizer. Carbon nanodots are especially promising for this purpose because of their strong visible-light absorption, photostability, non-toxicity, and very low production costs. In this work we demonstrate the possibility of coupling carbon dots to polyoxometalates with different structures, by a simple self-assembly approach based on electrostatic interactions in solution phase. Our studies highlight an extremely efficient interaction between the two compounds, resulting in ultrafast photoinduced electron or energy transfer from carbon dots to the coupled polyoxometalates, depending on the structure of the latter, as revealed by a detailed study based on ultrafast transient absorption spectroscopy. The evidence herein provided shows how nanohybrids based on polyoxometalates photosensitized by carbon dots could find their place in photocatalytic applications, thanks to their remarkable efficiency and huge versatility.


Assuntos
Carbono , Elétrons , Catálise , Luz , Polieletrólitos
5.
J Nanosci Nanotechnol ; 19(8): 4911-4919, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30913802

RESUMO

Environmental pollution caused by heavy metals constitutes a serious public health problem. In the case of uranium depletion, amidoxime groups are important because of their high affinity for uranium(VI). New series of bis(amidoxime)s with catechol-derived anchor groups were tested (b-AMD-1 and b-AMD-2). The catechol groups were designed to bind to the surface of maghemite nanoparticles (MNPs), and two nanohybrid devices MNP-b-AMD-1 and MNP-b-AMD-2 were obtained. This strategy makes for efficient removal of U(VI) via its complexation with the bis(amidoxime)s (b-AMD) and also its extraction from aqueous solution by magnetic harvesting of the MNPs. The assynthesized and b-AMD-grafted MNPs were characterized by several techniques: X-ray diffraction (XRD), high-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM), X-ray photoelectron spectrophotometry (XPS), thermal analysis (TG/DTA) and Fourier transform infrared spectroscopy (FTIR). Sorption tests were run at pH 6.5, which corresponds to the highest affinity and selectivity of b-AMD for U(VI). After magnetic separation, the chelation ability and the selectivity of MNP-b-AMD-1 and MNP-b-AMD-2 towards U(VI) were evaluated by measuring the residual U(VI) concentration in the supernatant by inductively coupled plasma-mass spectrometry (ICP-MS). The data were plotted according to the Langmuir and Freundlich isotherms; the maximal sorption capacity (qmax) was 29 and 60 mg U g-1 for MNP-b-AMD-1 and MNP-b-AMD-2, respectively. This confirms that bis(amidoxime) groups are good candidates for uranium depletion of aqueous solution.

6.
Nano Lett ; 15(4): 2574-81, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25738307

RESUMO

The growth of colloidal nanoparticles is simultaneously driven by kinetic and thermodynamic effects that are difficult to distinguish. We have exploited in situ scanning transmission electron microscopy in liquid to study the growth of Au nanoplates by radiolysis and unravel the mechanisms influencing their formation and shape. The electron dose provides a straightforward control of the growth rate that allows quantifying the kinetic effects on the planar nanoparticles formation. Indeed, we demonstrate that the surface-reaction rate per unit area has the same dose-rate dependent behavior than the concentration of reducing agents in the liquid cell. Interestingly, we also determine a critical supply rate of gold monomers for nanoparticle faceting, corresponding to three layers per second, above which the formation of nanoplates is not possible because the growth is then dominated by kinetic effects. At lower electron dose, the growth is driven by thermodynamic and the formation and shape of nanoplates are directly related to the twin-planes formed during the growth.

7.
Biochim Biophys Acta ; 1830(8): 4254-64, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23648413

RESUMO

BACKGROUND: Targeting nanoobjects via the iron-acquisition pathway is always reported slower than the transferrin/receptor endocytosis. Is there a remedy? METHODS: Maghemite superparamagnetic and theragnostic nanoparticles (diameter 8.6nm) were synthesized, coated with 3-aminopropyltriethoxysilane (NP) and coupled to four holotransferrin (TFe2) by amide bonds (TFe2-NP). The constructs were characterized by X-ray diffraction, transmission electron microscopy, FTIR, X-ray Electron Spectroscopy, Inductively Coupled Plasma with Atomic Emission Spectrometry. The in-vitro protein/protein interaction of TFe2-NP with transferrin receptor-1 (R1) and endocytosis in HeLa cells were investigated spectrophotometrically, by fast T-jump kinetics and confocal microscopy. RESULTS: In-vitro, R1 interacts with TFe2-NP with an overall dissociation constant KD=11nM. This interaction occurs in two steps: in the first, the C-lobe of the TFe2-NP interacts with R1 in 50µs: second-order rate constant, k1=6×10(10)M(-1)s(-1); first-order rate constant, k-1=9×10(4)s(-1); dissociation constant, K1d=1.5µM. In the second step, the protein/protein adduct undergoes a slow (10,000s) change in conformation to reach equilibrium. This mechanism is identical to that occurring with the free TFe2. In HeLa cells, TFe2-NP is internalized in the cytosol in less than 15min. CONCLUSION: This is the first time that a nanoparticle-transferrin construct is shown to interact with R1 and is internalized in time scales similar to those of the free holotransferrin. GENERAL SIGNIFICANCE: TFe2-NP behaves as free TFe2 and constitutes a model for rapidly targeting theragnostic devices via the main iron-acquisition pathway.


Assuntos
Antígenos CD/fisiologia , Compostos Férricos/metabolismo , Ferro/metabolismo , Nanopartículas , Receptores da Transferrina/fisiologia , Termodinâmica , Transferrina/metabolismo , Compostos Férricos/administração & dosagem , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Microscopia Confocal , Transferrina/administração & dosagem , Difração de Raios X
8.
J Xenobiot ; 14(2): 467-483, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38651378

RESUMO

With the increasing integration of nanomaterials into daily life, the potential ecotoxicological impacts of nanoparticles (NPs) have attracted increased attention from the scientific community. This study assessed the ecotoxicity of ZnS quantum dots (QDs) doped with varying molar concentrations of Mn2+ on Chlorella vulgaris. The ZnS:Mn QDs were synthesized using the polyol method. The size of the ZnS:Mn QDs ranged from approximately 1.1 nm to 2 nm, while the aggregation size in Seine River water was 341 nm at pH 6 and 8. The presence of ZnS:Mn (10%) NPs exhibited profound toxicity to Chlorella vulgaris, with immediate reductions in viability (survival cells) from 71%, 60% to 51%, 52% in BG11 and Seine River water, respectively, at a concentration of 100 mg L-1 of ZnS:Mn (10%) NPs. Additionally, the ATP content in Chlorella vulgaris significantly decreased in Seine River water (by 20%) after 3 h of exposure to ZnS:Mn (10%) NPs. Concurrently, SOD activity significantly increased in Seine River water, indicating that the ZnS:Mn (10%) NPs induced ROS production and triggered an oxidative stress response in microalgae cells.

9.
Sci Rep ; 14(1): 12529, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822019

RESUMO

The polyol synthesis of CoO nanoparticles (NPs) is typically conducted by dissolving and heating cobalt acetate tetrahydrate and water in diethylene glycol (DEG). This process yields aggregates of approximately 100 nm made of partially aligned primary crystals. However, the synthesis demands careful temperature control to allow the nucleation of CoO while simultaneously preventing reduction, caused by the activity of DEG. This restriction hinders the flexibility to freely adjust synthesis conditions, impeding the ability to obtain particles with varied morpho-structural properties, which, in turn, directly impact chemical and physical attributes. In this context, the growth of CoO NPs in polyol was studied focusing on the effect of the polyol chain length and the synthesis temperature at two different water/cations ratios. During this investigation, we found that longer polyol chains remove the previous limits of the method, allowing the tuning of aggregate size (20-150 nm), shape (spherical-octahedral), and crystalline length (8-35 nm). Regarding the characterization, our focus revolved around investigating the magnetic properties inherent in the synthesized products. From this point of view, two pivotal findings emerged. Firstly, we identified small quantities of a layered hydroxide ferromagnetic intermediate, which acted as interference in our measurements. This intermediate exhibited magnetic properties consistent with features observed in other publications on CoO produced in systems compatible with the intermediate formation. Optimal synthetic conditions that prevent the impurity from forming were found. This resolution clarifies several ambiguities existing in literature about CoO low-temperature magnetic behavior. Secondly, a regular relationship of the NPs' TN with their crystallite size was found, allowing us to regulate TN over ~ 80 K. For the first time, a branching was found in this structure-dependent magnetic feature, with samples of spheroidal morphology consistently having lower magnetic temperatures, when compared to samples with faceted/octahedral shape, providing compelling evidence for a novel physical parameter influencing the TN of a material. These two findings contribute to the understanding of the fundamental properties of CoO and antiferromagnetic materials.

10.
Nanomaterials (Basel) ; 13(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37764538

RESUMO

The ability to construct three-dimensional architectures via nanoscale engineering is important for emerging applications in sensors, catalysis, controlled drug delivery, microelectronics, and medical diagnostics nanotechnologies. Because of their well-defined and highly organized symmetric structures, viral plant capsids provide a 3D scaffold for the precise placement of functional inorganic particles yielding advanced hierarchical hybrid nanomaterials. In this study, we used turnip yellow mosaic virus (TYMV), grafting gold nanoparticles (AuNP) or iron oxide nanoparticles (IONP) onto its outer surface. It is the first time that such an assembly was obtained with IONP. After purification, the resulting nano-biohybrids were characterized by different technics (dynamic light scattering, transmission electron microcopy, X-ray photoelectron spectroscopy…), showing the robustness of the architectures and their colloidal stability in water. In-solution photothermal experiments were then successfully conducted on TYMV-AuNP and TYMV-IONP, the related nano-biohybrids, evidencing a net enhancement of the heating capability of these systems compared to their free NP counterparts. These results suggest that these virus-based materials could be used as photothermal therapeutic agents.

11.
Waste Manag ; 155: 179-191, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36379167

RESUMO

The conversion processes of sugarcane into direct-consumption sugar and juice are generating a tremendous amount of waste, the so-called sugarcane bagasse (SCB). Biochar preparation is among the practical solutions aiming to manage and valorize SCB into high added-value functional material (FM). Herein, we propose a novel zero-waste pathway to fabricate two FMs from one biomass. The SCB was first macerated and ultrasonicated to obtain the natural extract that served as bio-reducing medium. Then, the H2O/EtOH-extracted SCB was in-situ impregnated with a bimetallic solution of copper and silver nitrates. The process produced an intermediate composite (FM0), Ag/Cu-Ag+/Cu2+-loaded SCB which was carbonized to elaborate Ag/Cu-Biochar (FM1), free Ag/Cu nanoparticles (FM2) were obtained by microwaving the residual liquid waste. FM1 exhibited high catalytic activity for the total Fenton-like degradation of methylene blue. The experimental data followed the pseudo-first and the pseudo-second order rate laws with apparent degradation rate constants K1 45 10-3 min-1 and K2 0.115 g.mg-1.min-1, respectively. FM0, FM1 and FM2 were tested as new anti-kinetoplastid materials against two flagellated protozoans namely the Leishmania spp and the Trypanosoma cruzi. Notably, Ag/Cu (FM2) showed exceptional leishmanicidal and trypanocidal effects with IC50 values of 2.909 ± 0.051, 3.580 ± 0.016 and 3.020 ± 0.372 ppm for L.donovani, L. amazonensis and Trypanosoma cruzi, respectively. In this way, we combine green chemistry and agrowaste valorization in a full zero-waste process, to address the 3rd (indicator 3.3.5) and 6th (indicator 6.3.1) United Nations sustainable development goals, ″Good Health and Well-Being″ and ″Clean Water and Sanitation″.


Assuntos
Saccharum , Celulose , Carvão Vegetal
12.
J Am Chem Soc ; 133(6): 1646-9, 2011 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-21247155

RESUMO

A novel and facile methodology for the in situ surface functionalization of Fe(3)O(4) nanoparticles is proposed, based on the use of aryl diazonium salts chemistry. The grafting reaction involves the formation of diazoates in a basic medium. These species are unstable and dediazonize along a homolytic pathway to give aryl radicals which further react with the Fe(3)O(4) NPs during their formation and stop their growth. Advantages of the present approach rely not only on the simplicity, rapidity, and efficiency of the procedure but also on the formation of strong Fe(3)O(4)-aryl surface bonds, highly suitable for further applications.


Assuntos
Compostos de Diazônio/química , Nanopartículas de Magnetita/química , Sais/química , Água/química , Concentração de Íons de Hidrogênio , Solubilidade
13.
ACS Appl Mater Interfaces ; 13(39): 46875-46885, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34570462

RESUMO

In this study, polyol-made CdS and CdSe crystalline nanoparticles (NPs) are loaded by impregnation on TiO2 nanotube arrays (TNTAs) for solar-simulated light-driven photoelectrochemical (PEC) water vapor splitting. For the first time, we introduce a safe way to utilize toxic, yet efficient photocatalysts by integration in solid-state PEC (SSPEC) cells. The enabling features of SSPEC cells are the surface protonic conduction mechanism on TiO2 and the use of polymeric electrolytes, such as Nafion instead of liquid ones, for operation with gaseous reactants, like water vapor from ambient humidity. Herein, we studied the effects of both the operating conditions in gaseous ambient atmospheres and the surface modifications of TNTAs-based photoanodes with well-crystallized CdS and CdSe NPs. We showed 3.6 and 2.5 times increase in the photocurrent density of defective TNTAs modified with CdS and CdSe, respectively, compared to the pristine TNTAs. Electrochemical impedance spectroscopy and structural characterizations attributed the improved performance to the higher conductivity induced by intrinsic defects as well as to the enhanced electron/hole separation at the TiO2/CdS heterojunction under gaseous operating conditions. The SSPEC cells were evaluated by cycling between high relative humidity (RH) (80%) and low RH levels (40%), providing direct evidence of the effect of RH and, in turn, adsorbed water, on the cell performance. Online mass spectrometry indicated the corresponding difference in the H2 production rate. In addition, a complete restoration of the SSPEC cell performance from low to high RH levels was also achieved. The presented system can be employed in off-grid, water depleted, and air-polluted areas for the production of hydrogen from renewable energy and provides a solution for the safe use of toxic, yet efficient photocatalysts.

14.
Nanomaterials (Basel) ; 11(2)2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33671136

RESUMO

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF cytokine superfamily. TRAIL is able to induce apoptosis through engagement of its death receptors DR4 and DR5 in a wide variety of tumor cells while sparing vital normal cells. This makes it a promising agent for cancer therapy. Here, we present two different ways of covalently grafting TRAIL onto maghemite nanoparticles (NPs): (a) by using carboxylic acid groups of the protein to graft it onto maghemite NPs previously functionalized with amino groups, and (b) by using the amino functions of the protein to graft it onto NPs functionalized with carboxylic acid groups. The two resulting nanovectors, NH-TRAIL@NPs-CO and CO-TRAIL@NPs-NH, were thoroughly characterized. Biological studies performed on human breast and lung carcinoma cells (MDA-MB-231 and H1703 cell lines) established these nanovectors are potential agents for cancer therapy. The pro-apoptotic effect is somewhat greater for CO-TRAIL@NPs-NH than NH-TRAIL@NPs-CO, as evidenced by viability studies and apoptosis analysis. A computational study indicated that regardless of whether TRAIL is attached to NPs through an acid or an amino group, DR4 recognition is not affected in either case.

15.
Nanomaterials (Basel) ; 11(5)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068287

RESUMO

The formation of silver nanopetal-Fe3O4 poly-nanocrystals assemblies and the use of the resulting hetero-nanostructures as active substrates for Surface Enhanced Raman Spectroscopy (SERS) application are here reported. In practice, about 180 nm sized polyol-made Fe3O4 spheres, constituted by 10 nm sized crystals, were functionalized by (3-aminopropyl)triethoxysilane (APTES) to become positively charged, which can then electrostatically interact with negatively charged silver seeds. Silver petals were formed by seed-mediated growth in presence of Ag+ cations and self-assembly, using L-ascorbic acid (L-AA) and polyvinyl pyrrolidone (PVP) as mid-reducing and stabilizing agents, respectively. The resulting plasmonic structure provides a rough surface with plenty of hot spots able to locally enhance significantly any applied electrical field. Additionally, they exhibited a high enough saturation magnetization with Ms = 9.7 emu g-1 to be reversibly collected by an external magnetic field, which shortened the detection time. The plasmonic property makes the engineered Fe3O4-Ag architectures particularly valuable for magnetically assisted ultra-sensitive SERS sensing. This was unambiguously established through the successful detection, in water, of traces, (down to 10-10 M) of Rhodamine 6G (R6G), at room temperature.

16.
Nanomaterials (Basel) ; 10(6)2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32580494

RESUMO

The term "polyol process" was first used in the late eighties by Fiévet, Lagier, and Figlarz [...].

17.
Nanomaterials (Basel) ; 10(2)2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32050550

RESUMO

In this work, the preparation of magneto-plasmonic granular nanostructures and their evaluation as efficient substrates for magnetically assisted surface enhanced Raman spectroscopy (SERS) sensing are discussed. These nanostructures consist of star-shaped gold Au shell grown on iron oxide Fe3-xO4 multicores. They were prepared by seed-mediated growth of anisotropic, in shape gold nanosatellites attached to the surface of polyol-made iron oxide polycrystals. In practice, the 180 nm-sized spherical iron oxide particles were functionalized by (3-aminopropyl) triethoxysilane (APTES) to become positively charged and to interact, in solution, with negatively charged 2 nm-sized Au single crystals, leading to nanohybrids. These hybrids acted subsequently as nucleation platforms for the growth of a branched gold shell, when they were contacted to a fresh HAuCl4 gold salt aqueous solution, in the presence of hydroquinone, a reducing agent, for an optimized nominal weight ratio between both the starting hybrids and the gold salt. As expected, the resulting nanocomposites exhibit a high saturation magnetization at room temperature and a rough enough plasmonic surface, making them easily attracted by a lab. magnet, while exhibiting a great number of SERS hot spots. Preliminary SERS detection assays were successfully performed on diluted aqueous thiram solution (10-8 M), using these engineered substrates, highlighting their capability to be used as chemical trace sensors.

18.
Nanomaterials (Basel) ; 10(2)2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32069779

RESUMO

Fe-glycolate wires with micrometer-scale lengths can be synthesized by the polyol process. Although the as-produced wires are in the paramagnetic state at room temperature, they are transformed into ferrimagnetic iron oxides and ferromagnetic metallic iron wires by reductive annealing. The shape of the wires is unchanged by reductive annealing, and it is possible to control the magnetic properties of the resulting wire-shaped ferri/ferromagnets by adjusting the annealing conditions. Consequently, the reductive annealing of polyol-derived Fe-glycolate wires is an effective material-processing route for the production of magnetic wires.

19.
Nanomaterials (Basel) ; 10(2)2020 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-32102260

RESUMO

Red luminescent and superparamagnetic ß-NaY0.8Eu0.2F4@γ-Fe2O3 nanoparticles, made of a 70 nm-sized ß-NaY0.8Eu0.2F4 single crystal core decorated by a 10 nm-thick polycrystalline and discontinuous γ-Fe2O3 shell, have been synthesized by the polyol process. Functionalized with citrate ligands they show a good colloidal stability in water making them valuable for dual magnetic resonance and optical imaging or image-guided therapy. They exhibit a relatively high transverse relaxivity r2 = 42.3 mM-1·s-1 in water at 37 °C, for an applied static magnetic field of 1.41 T, close to the field of 1.5 T applied in clinics, as they exhibit a red emission by two-photon excited fluorescence microscopy. Finally, when brought into contact with healthy human foreskin fibroblast cells (BJH), for doses as high as 50 µg·mL-1 and incubation time as long as 72 h, they do not show evidence of any accurate cytotoxicity, highlighting their biomedical applicative potential.

20.
J Phys Chem Lett ; 11(11): 4379-4384, 2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32345017

RESUMO

Using solar radiation to fuel catalytic processes is often regarded as the solution to our energy needs. However, developing effective photocatalysts that are active under visible light has proven to be difficult, often due to the toxicity, instability, and high cost of suitable catalysts. We engineered a novel photoactive nanomaterial obtained by the spontaneous electrostatic coupling of carbon nanodots with [P2W18O62]6-, a molecular catalyst belonging to the class of polyoxometalates. While the former are used as photosensitizers, the latter was chosen for its ability to catalyze reductive reactions such as dye decomposition and water splitting. We find the electron transfer within the nanohybrid to be so efficient that a charge-separated state is formed within 120 fs from photon absorption. These results are a cornerstone in the engineering of a new class of nanodevices, which are nontoxic, are inexpensive, and can carry out solar-driven catalytic processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA