Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Hepatology ; 73(2): 571-585, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32246544

RESUMO

BACKGROUND AND AIMS: Alcoholic hepatitis (AH) is diagnosed by clinical criteria, although several objective scores facilitate risk stratification. Extracellular vesicles (EVs) have emerged as biomarkers for many diseases and are also implicated in the pathogenesis of AH. Therefore, we investigated whether plasma EV concentration and sphingolipid cargo could serve as diagnostic biomarkers for AH and inform prognosis to permit dynamic risk profiling of AH subjects. APPROACH AND RESULTS: EVs were isolated and quantified from plasma samples from healthy controls, heavy drinkers, and subjects with end-stage liver disease (ESLD) attributed to cholestatic liver diseases and nonalcoholic steatohepatitis, decompensated alcohol-associated cirrhosis (AC), and AH. Sphingolipids were quantified by tandem mass spectroscopy. The median plasma EV concentration was significantly higher in AH subjects (5.38 × 1011 /mL) compared to healthy controls (4.38 × 1010 /mL; P < 0.0001), heavy drinkers (1.28 × 1011 /mL; P < 0.0001), ESLD (5.35 × 1010 /mL; P < 0.0001), and decompensated AC (9.2 × 1010 /mL; P < 0.0001) disease controls. Among AH subjects, EV concentration correlated with Model for End-Stage Liver Disease score. When EV counts were dichotomized at the median, survival probability for AH subjects at 90 days was 63.0% in the high-EV group and 90.0% in the low-EV group (log-rank P value = 0.015). Interestingly, EV sphingolipid cargo was significantly enriched in AH when compared to healthy controls, heavy drinkers, ESLD, and decompensated AC (P = 0.0001). Multiple sphingolipids demonstrated good diagnostic and prognostic performance as biomarkers for AH. CONCLUSIONS: Circulating EV concentration and sphingolipid cargo signature can be used in the diagnosis and differentiation of AH from heavy drinkers, decompensated AC, and other etiologies of ESLD and predict 90-day survival permitting dynamic risk profiling.


Assuntos
Alcoolismo/diagnóstico , Doença Hepática Terminal/diagnóstico , Hepatite Alcoólica/diagnóstico , Cirrose Hepática/diagnóstico , Esfingolipídeos/sangue , Adulto , Idoso , Alcoolismo/sangue , Alcoolismo/complicações , Biomarcadores/sangue , Biópsia , Estudos de Casos e Controles , Diagnóstico Diferencial , Doença Hepática Terminal/sangue , Vesículas Extracelulares , Feminino , Hepatite Alcoólica/sangue , Hepatite Alcoólica/epidemiologia , Hepatite Alcoólica/patologia , Humanos , Fígado/patologia , Cirrose Hepática/sangue , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Medição de Risco/métodos , Índice de Gravidade de Doença
2.
Nanomedicine ; 36: 102430, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34174416

RESUMO

There is increasing interest in the development of minimally invasive biomarkers for the diagnosis and prognosis of NAFLD via extracellular vesicles (EV). Plasma EVs were isolated by differential ultracentrifugation and quantified by nanoparticle tracking analysis from pre (n = 28) and post (n = 28) weight loss patients. In the pre weight loss group 22 had NAFLD. Nanoplasmon enhanced scattering (nPES) of gold nanoparticles conjugated to hepatocyte-specific antibodies was employed to identify hepatocyte-specific EVs. Complex lipid panel and targeted sphingolipids were performed. Logistic regression analysis was used to identify predictors of NAFLD. Plasma levels of EVs and hepatocyte-derived EVs are dynamic and decrease following NAFLD resolution due to weight loss surgery. Hepatocyte-derived EVs correlate with steatosis in NAFLD patients and steatosis and inflammation in NASH patients. Plasma levels of small EVs correlate with EV sphingolipids in patients with NASH. Hepatocyte-derived EVs measured by the nPES assay could serve as a point-of-care test for NAFLD.


Assuntos
Hepatócitos/metabolismo , Hepatopatia Gordurosa não Alcoólica/sangue , Redução de Peso , Adulto , Biomarcadores/sangue , Vesículas Extracelulares , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/cirurgia
3.
ACS Appl Nano Mater ; 5(3): 3983-3991, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35372799

RESUMO

Biomarker detection and bulk refractive index sensing are important across multiple industries ranging from early medical diagnosis to chemical process quality control. The bulky size, high cost, and complex architecture of existing refractive index and biomarker sensing technologies limit their use to highly skilled environments like hospitals, large food processing plants, and research labs. Here, we demonstrate a compact and inexpensive refractive index sensor based on resonant dielectric photonic nanoantenna arrays or metasurfaces. These dielectric resonances support Mie dipole and asymmetric resonances that shift with changes in their external environment. A single-wavelength transmission measurement in a portable (<250 in.3), low-cost (<$4000) sensor shows sensitivity to 1.9 × 10-6 change in the fluid refractive index without the use of a spectrometer or other complex optics. Our sensor assembly allows for measurements using multiple metasurfaces with identical resonances or varying resonance types for enhanced diagnostics on the same chip. Furthermore, a 10 kDa culture filtrate peptide CFP-10, a marker for human tuberculosis, is detected with our sensor with 10 pM resolution. This system has the potential to enable facile, fast, and highly sensitive measurements with adequate limits of detection for personalized biomedical diagnoses.

4.
ACS Appl Bio Mater ; 4(9): 6589-6603, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35006963

RESUMO

Exosomes are abundantly secreted by most cells that carry membrane and cytosolic factors that can reflect the physiologic state of their source cells and thus have strong potential to serve as biomarkers for early diagnosis, disease staging, and treatment monitoring. However, traditional diagnostic or prognostic applications that might use exosomes are hindered by the lack of rapid and sensitive assays that can exploit their biological information. An array of assay approaches have been developed to address this deficit, including those that integrate immunoassays with nanoplasmonic sensors to measure changes in optical refractive indexes in response to the binding of low concentrations of their targeted molecules. These sensors take advantage of enhanced and tunable interactions between the electron clouds of nanoplasmonic particles and structures and incident electromagnetic radiation to enable isolation-free and ultrasensitive quantification of disease-associated exosome biomarkers present in complex biological samples. These unique advantages make nanoplasmonic sensing one of the most competitive approaches available for clinical applications and point-of-care tests that evaluate exosome-based biomarkers. This review will briefly summarize the origin and clinical utility of exosomes and the limitations of current isolation and analysis approaches before reviewing the specific advantages and limitations of nanoplasmonic sensing devices and indicating what additional developments are necessary to allow the translation of these approaches into clinical applications.


Assuntos
Exossomos , Bioensaio , Biomarcadores/metabolismo , Exossomos/metabolismo , Imunoensaio , Refratometria
5.
Biosens Bioelectron ; 179: 113058, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33592557

RESUMO

Extracellular vesicles (EVs) can represent a novel source of disease biomarkers, and are under intensive study for their clinical potential. Most EV-based cancer diagnostic studies have focused on establishing EV assays that detect increased expression of a single cancer-associated marker or marker signatures based on multiplex detection of these biomarkers. EV biomarker readouts can be obscured by high background signal leading to false positives, and may markedly differ between analyses due to variation in sample purity during EV isolation. This can obstruct the comparisons among studies and lead to conflicting conclusions. This work reports that the nucleic acid to protein UV absorption ratio of an EV is a cell-specific EV characteristic. This EV collective attribute can be measured at low-cost to discriminate EVs derived from malignant and non-malignant cells rather than employing single markers that may be cancer- or subtype-specific. Our work also highlighted the application for accessing purity in EV preparations irrelevant to EV yield. It can be employed to distinguish from patients with and without malignant disease upon analysis of EVs isolated from their serum samples.


Assuntos
Técnicas Biossensoriais , Vesículas Extracelulares , Ácidos Nucleicos , Biomarcadores , Humanos , Proteínas
6.
Front Genet ; 10: 1273, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921310

RESUMO

Extracellular vesicles (EVs) are abundant in most biological fluids and considered promising biomarker candidates, but the development of EV biomarker assays is hindered, in part, by their requirement for prior EV purification and the lack of standardized and reproducible EV isolation methods. We now describe a far-field nanoplasmon-enhanced scattering (FF-nPES) assay for the isolation-free characterization of EVs present in small volumes of serum (< 5 µl). In this approach, EVs are captured with a cancer-selective antibody, hybridized with gold nanorods conjugated with an antibody to the EV surface protein CD9, and quantified by their ability to scatter light when analyzed using a fully automated dark-field microscope system. Our results indicate that FF-nPES performs similarly to EV ELISA, when analyzing EV surface expression of epithelial cell adhesion molecule (EpCAM), which has clinical significant as a cancer biomarker. Proof-of-concept FF-nPES data indicate that it can directly analyze EV EpCAM expression from serum samples to distinguish early stage pancreatic ductal adenocarcinoma patients from healthy subjects, detect the development of early stage tumors in a mouse model of spontaneous pancreatic cancer, and monitor tumor growth in patient derived xenograft mouse models of pancreatic cancer. FF-nPES thus appears to exhibit strong potential for the direct analysis of EV membrane biomarkers for disease diagnosis and treatment monitoring.

7.
J Vis Exp ; (147)2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-31180357

RESUMO

Infected or malignant cells frequently secrete more exosomes, leading to elevated levels of disease-associated exosomes in the circulation. These exosomes have the potential to serve as biomarkers for disease diagnosis and to monitor disease progression and treatment response. However, most exosome analysis procedures require exosome isolation and purification steps, which are usually time-consuming and labor-intensive, and thus of limited utility in clinical settings. This report describes a rapid procedure to analyze specific biomarkers on the outer membrane of exosomes without requiring separate isolation and purification steps. In this method, exosomes are captured on the surface of a slide by exosome-specific antibodies and then hybridized with nanoparticle-conjugated antibody probes specific to a disease. After hybridization, the abundance of the target exosome population is determined by analyzing low-magnification dark-field microscope (LMDFM) images of the bound nanoparticles. This approach can be easily adopted for research and clinical use to analyze membrane-associated exosome biomarkers linked to disease.


Assuntos
Exossomos/metabolismo , Microscopia/métodos , Nanopartículas/química , Linhagem Celular Tumoral , Humanos
8.
Light Sci Appl ; 8: 78, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31645924

RESUMO

The manipulation and characterization of light polarization states are essential for many applications in quantum communication and computing, spectroscopy, bioinspired navigation, and imaging. Chiral metamaterials and metasurfaces facilitate ultracompact devices for circularly polarized light generation, manipulation, and detection. Herein, we report bioinspired chiral metasurfaces with both strong chiral optical effects and low insertion loss. We experimentally demonstrated submicron-thick circularly polarized light filters with peak extinction ratios up to 35 and maximum transmission efficiencies close to 80% at near-infrared wavelengths (the best operational wavelengths can be engineered in the range of 1.3-1.6 µm). We also monolithically integrated the microscale circular polarization filters with linear polarization filters to perform full-Stokes polarimetric measurements of light with arbitrary polarization states. With the advantages of easy on-chip integration, ultracompact footprints, scalability, and broad wavelength coverage, our designs hold great promise for facilitating chip-integrated polarimeters and polarimetric imaging systems for quantum-based optical computing and information processing, circular dichroism spectroscopy, biomedical diagnosis, and remote sensing applications.

9.
Mater Sci Eng C Mater Biol Appl ; 69: 1383-90, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27612840

RESUMO

Although human mouth benefits from remarkable mechanical properties, it is very susceptible to traumatic damages, exposure to microbial attacks, and congenital maladies. Since the human dentition plays a crucial role in mastication, phonation and esthetics, finding promising and more efficient strategies to reestablish its functionality in the event of disruption has been important. Dating back to antiquity, conventional dentistry has been offering evacuation, restoration, and replacement of the diseased dental tissue. However, due to the limited ability and short lifespan of traditional restorative solutions, scientists have taken advantage of current advancements in medicine to create better solutions for the oral health field and have coined it "regenerative dentistry." This new field takes advantage of the recent innovations in stem cell research, cellular and molecular biology, tissue engineering, and materials science etc. In this review, the recently known resources and approaches used for regeneration of dental and oral tissues were evaluated using the databases of Scopus and Web of Science. Scientists have used a wide range of biomaterials and scaffolds (artificial and natural), genes (with viral and non-viral vectors), stem cells (isolated from deciduous teeth, dental pulp, periodontal ligament, adipose tissue, salivary glands, and dental follicle) and growth factors (used for stimulating cell differentiation) in order to apply tissue engineering approaches to dentistry. Although they have been successful in preclinical and clinical partial regeneration of dental tissues, whole-tooth engineering still seems to be far-fetched, unless certain shortcomings are addressed.


Assuntos
Odontologia/tendências , Medicina Regenerativa/tendências , Materiais Biocompatíveis/farmacologia , Humanos , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA