Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Rapid Commun Mass Spectrom ; : e9477, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658103

RESUMO

RATIONALE: Higher resolution in fieldable mass spectrometers (MS) is desirable in space flight applications to enable resolving isobaric interferences at m/z < 60 u. Resolution in portable cycloidal MS coupled with array detectors could be improved by reducing the slit width and/or by reducing the width of the detector pixels. However, these solutions are expensive and can result in reduced sensitivity. In this paper, we demonstrate high-resolution spectral reconstruction in a cycloidal coded aperture miniature mass spectrometer (C-CAMMS) without changing the slit or detector pixel sizes using a class of signal processing techniques called super-resolution (SR). METHODS: We developed an SR reconstruction algorithm using a sampling SR approach whereby a set of spatially shifted low-resolution measurements are reconstructed into a higher-resolution spectrum. This algorithm was applied to experimental data collected using the C-CAMMS prototype. It was then applied to synthetic data with additive noise, system response variation, and spatial shift nonuniformity to investigate the source of reconstruction artifacts in the experimental data. RESULTS: Experimental results using two ½ pixel shifted spectra resulted in a resolution of ¾ pixel full width at half maximum (FWHM) at m/z = 28 u. This resolution is equivalent to 0.013 u, six times better than the resolution previously published at m/z = 28 for N2 + using C-CAMMS. However, the reconstructed spectra exhibited some artifacts. The results of the synthetic data study indicate that the artifacts are most likely caused by the system response variation. CONCLUSIONS: This paper demonstrates super-resolution spectral reconstruction in C-CAMMS without changing the slit or detector pixel sizes using a sampling SR approach. With improvements, this technique could be used to resolve isobaric interferences in a portable cycloidal MS for space flight applications.

2.
Anal Chem ; 93(33): 11357-11363, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34370439

RESUMO

In 1938, Walker Bleakney and John A. Hipple first described the cycloidal mass analyzer as the only mass analyzer configuration capable of "perfect" ion focusing. Why has their geometry been largely neglected for many years and how might it earn a respectable place in the world of modern chemical analysis? This Perspective explores the properties of the cycloidal mass analyzer and identifies the lack of suitable ion array detectors as a significant reason why cycloidal mass analyzers are not widely used. The recent development of capacitive transimpedance amplifier array detectors can enable several techniques using cycloidal mass analyzers including spatially coded apertures and single particle mass analysis with a "virtual-slit", helping the cycloidal mass analyzer earn a respectable place in chemical analysis.


Assuntos
Amplificadores Eletrônicos
3.
Proc Natl Acad Sci U S A ; 109(48): 19584-9, 2012 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-23150544

RESUMO

Advances in personalized medicine are symbiotic with the development of novel technologies for biomedical devices. We present an approach that combines enhanced imaging of malignancies, therapeutics, and feedback about therapeutics in a single implantable, biocompatible, and resorbable device. This confluence of form and function is accomplished by capitalizing on the unique properties of silk proteins as a mechanically robust, biocompatible, optically clear biomaterial matrix that can house, stabilize, and retain the function of therapeutic components. By developing a form of high-quality microstructured optical elements, improved imaging of malignancies and of treatment monitoring can be achieved. The results demonstrate a unique family of devices for in vitro and in vivo use that provide functional biomaterials with built-in optical signal and contrast enhancement, demonstrated here with simultaneous drug delivery and feedback about drug delivery with no adverse biological effects, all while slowly degrading to regenerate native tissue.


Assuntos
Materiais Biocompatíveis , Óptica e Fotônica , Próteses e Implantes , Nanopartículas Metálicas , Microscopia Eletrônica de Varredura
4.
J Am Soc Mass Spectrom ; 35(5): 855-861, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38623944

RESUMO

Spatial aperture coding is a technique used to improve throughput without sacrificing resolution both in optical spectroscopy and sector mass spectrometry (MS). Previous work demonstrated that aperture coding combined with a position-sensitive array detector in a miniature cycloidal mass spectrometer was successful in providing high-throughput, high-resolution measurements. However, due to poor alignment and field nonuniformities, reconstruction artifacts were present. Recently, significant progress was made in eliminating most of the reconstruction artifacts with improved field uniformity and alignment. However, artifacts as large as 1/3 of the main peak were still observed at low mass (<17 u). Such artifacts will reduce accuracy in identification and quantification of analytes, reducing the impact of the throughput advantage gained by using a coded aperture. The artifacts were hypothesized to be a result of a mass dependent in curvature of ions in the ion source. Ions with higher mass (m/z > 17 u) and a larger curvature did not pass through all slits in the coded aperture. Therefore, when reconstructing with a system response derived from the aperture image from a higher mass m/z = 32 u ion, reconstruction artifacts appeared for m/z < 17 u. In this work, two methods were implemented to significantly reduce the presence of artifacts in reconstructed data. First, we modified the reconstruction algorithm to incorporate a mass-dependent system response function across the mass range (10-110 u). This method reduced the size of the artifacts by 82%. Second, to validate the hypothesis that the mass-dependent system response function was a result of differences in curvature of ions in the ion source, we modified the design of the ion source by shifting the coded aperture slits relative to the center of the ionization volume. This method resulted in ions of all masses passing through all slits in the coded aperture, a constant system response function across the entire mass range. Artifacts were reduced by 94%.

5.
Proc Natl Acad Sci U S A ; 107(27): 12086-90, 2010 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-20566892

RESUMO

Light scattering phenomena in periodic systems have been investigated for decades in optics and photonics. Their classical description relies on Bragg scattering, which gives rise to constructive interference at specific wavelengths along well defined propagation directions, depending on illumination conditions, structural periodicity, and the refractive index of the surrounding medium. In this paper, by engineering multifrequency colorimetric responses in deterministic aperiodic arrays of nanoparticles, we demonstrate significantly enhanced sensitivity to the presence of a single protein monolayer. These structures, which can be readily fabricated by conventional Electron Beam Lithography, sustain highly complex structural resonances that enable a unique optical sensing approach beyond the traditional Bragg scattering with periodic structures. By combining conventional dark-field scattering micro-spectroscopy and simple image correlation analysis, we experimentally demonstrate that deterministic aperiodic surfaces with engineered structural color are capable of detecting, in the visible spectral range, protein layers with thickness of a few tens of Angstroms.


Assuntos
Nanopartículas Metálicas/química , Nanotecnologia/métodos , Proteínas/química , Algoritmos , Luz , Nanotecnologia/instrumentação , Refratometria , Espalhamento de Radiação , Análise Espectral/métodos
6.
Micromachines (Basel) ; 14(5)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37241597

RESUMO

This paper demonstrates a fully integrated vacuum microelectronic NOR logic gate fabricated using microfabricated polysilicon panels oriented perpendicular to the device substrate with integrated carbon nanotube (CNT) field emission cathodes. The vacuum microelectronic NOR logic gate consists of two parallel vacuum tetrodes fabricated using the polysilicon Multi-User MEMS Processes (polyMUMPs). Each tetrode of the vacuum microelectronic NOR gate demonstrated transistor-like performance but with a low transconductance of 7.6 × 10-9 S as current saturation was not achieved due to a coupling effect between the anode voltage and cathode current. With both tetrodes working in parallel, the NOR logic capabilities were demonstrated. However, the device exhibited asymmetric performance due to differences in the CNT emitter performance in each tetrode. Because vacuum microelectronic devices are attractive for use in high radiation environments, to test the radiation survivability of this device platform, we demonstrated the function of a simplified diode device structure during exposure to gamma radiation at a rate of 45.6 rad(Si)/second. These devices represent a proof-of-concept for a platform that can be used to build intricate vacuum microelectronic logic devices for use in high-radiation environments.

7.
Proc Natl Acad Sci U S A ; 106(46): 19227-32, 2009 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-19880744

RESUMO

Infrared absorption spectroscopy enabling direct access to vibrational fingerprints of the molecular structure is a powerful method for functional studies of bio-molecules. Although the intrinsic absorption cross-sections of IR active modes of proteins are nearly 10 orders of magnitude larger than the corresponding Raman cross-sections, they are still small compared to that of fluorescence-label based methods. Here, we developed a new tool based on collective excitation of plasmonic nanoantenna arrays and demonstrated direct detection of vibrational signatures of single protein monolayers. We first tailored the geometry of individual nanoantennas to form resonant structures that match the molecular vibrational modes. The tailored nanoantennas are then arranged in such a way that their in-phase dipolar coupling leads to a collective excitation of the ensemble with strongly enhanced near fields. The combined collective and individual plasmonic responses of the antenna array play a critical role in attaining signal enhancement factors of 10(4)-10(5). We achieved measurement of the vibrational spectra of proteins at zeptomole levels for the entire array, corresponding to only 145 molecules per antenna. The near-field nature of the plasmonic enhancement of the absorption signals is demonstrated with progressive loading of the nanoantennas with varying protein film thicknesses. Finally, an advanced model based on nonequilibrium Green's function formalism is introduced, which explains the observed Fano-type absorption line-shapes and tuning of the absorption strengths with the antenna resonance.


Assuntos
Fibroínas/química , Nanoestruturas/química , Espectrofotometria Infravermelho/métodos , Análise Espectral Raman/métodos , Ressonância de Plasmônio de Superfície/métodos , Sensibilidade e Especificidade , Vibração
8.
J Mass Spectrom ; 57(7): e4874, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35836410

RESUMO

With the advent of technologies such as ion array detectors and high energy permanent magnet materials, there is renewed interest in the unique focusing properties of the cycloidal mass analyzer and its ability to enable small, high-resolution, and high-sensitivity instruments. However, most literature dealing with the design of cycloidal mass analyzers assumes a single channel detector because at the time of those publications, compatible multichannel detectors were not available. This manuscript introduces and discusses considerations and a procedure for designing cycloidal mass analyzers coupled with focal plane ion array detectors. To arrive at a set of relevant design considerations, we first review the unique focusing properties of the cycloidal mass analyzer and then present calculations detailing how the dimensions and position of the focal plane array detector relative to the ion source determine the possible mass ranges and resolutions of a cycloidal mass analyzer. We present derivations and calculations used to determine the volume of homogeneous electric and magnetic fields needed to contain the ion trajectories and explore the relationship between electric and magnetic field homogeneity on resolving power using finite element analysis (FEA) simulations. A set of equations relating the electric field homogeneity to the geometry of the electric sector electrodes was developed by fitting homogeneity values from 78 different FEA models. Finally, a sequence of steps is suggested for designing a cycloidal mass analyzer employing an array detector.


Assuntos
Desenho de Equipamento
9.
Nat Mater ; 9(6): 511-7, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20400953

RESUMO

Electronics that are capable of intimate, non-invasive integration with the soft, curvilinear surfaces of biological tissues offer important opportunities for diagnosing and treating disease and for improving brain/machine interfaces. This article describes a material strategy for a type of bio-interfaced system that relies on ultrathin electronics supported by bioresorbable substrates of silk fibroin. Mounting such devices on tissue and then allowing the silk to dissolve and resorb initiates a spontaneous, conformal wrapping process driven by capillary forces at the biotic/abiotic interface. Specialized mesh designs and ultrathin forms for the electronics ensure minimal stresses on the tissue and highly conformal coverage, even for complex curvilinear surfaces, as confirmed by experimental and theoretical studies. In vivo, neural mapping experiments on feline animal models illustrate one mode of use for this class of technology. These concepts provide new capabilities for implantable and surgical devices.


Assuntos
Eletrônica/métodos , Fibroínas , Seda , Animais , Ação Capilar , Gatos , Eletrodos , Eletrônica/instrumentação , Microscopia Confocal/métodos , Modelos Animais , Polimetil Metacrilato , Próteses e Implantes , Solubilidade , Estresse Mecânico , Instrumentos Cirúrgicos
10.
J Am Soc Mass Spectrom ; 32(2): 509-518, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33382610

RESUMO

Cycloidal sector mass analyzers have, in principle, perfect focusing due to perpendicularly oriented uniform electric and magnetic fields, making them ideal candidates for incorporation of spatially coded apertures. We have previously demonstrated a proof-of-concept cycloidal-coded aperture miniature mass spectrometer (C-CAMMS) instrument and achieved a greater than 10-fold increase in throughput without sacrificing resolution, compared with a single slit instrument. However, artifacts were observed in the reconstructed mass spectrum due to nonuniformity in the electric field and misalignment of the detector and the ion source with the mass analyzer focal plane. In this work, we modified the mass analyzer design of the previous C-CAMMS instrument to improve electric field uniformity, improve the alignment of the ion source and the mass analyzer with the detector, and increase the depth-of-focus to further facilitate alignment. A comparison of reconstructed spectra of a mixture of dry air and toluene at different electric fields was performed using the improved C-CAMMS prototype. A reduction in reconstruction artifacts compared to our proof-of-concept C-CAMMS instrument highlights the improved performance enabled by the design changes.

11.
Opt Express ; 18(14): 14568-76, 2010 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-20639942

RESUMO

Periodic gratings and photonic bandgap structures have been studied for decades in optical technologies. The translational invariance of periodic gratings gives rise to well-known angular and frequency filtering of the incident radiation resulting in well-defined scattered colors in response to broadband illumination. Here, we demonstrate the formation of highly complex structural color patterns, or colorimetric fingerprints, in two-dimensional (2D) deterministic aperiodic gratings using dark field scattering microscopy. The origin of colorimetric fingerprints is explained by rigorous full-wave numerical simulations based on the generalized Mie theory. We show that unlike periodic gratings, aperiodic nanopatterned surfaces feature a broadband frequency response with wide angular intensity distributions governed by the distinctive Fourier properties of the aperiodic structures. Finally, we will discuss a range of potential applications of colorimetric fingerprints for optical sensing and spectroscopy.

12.
Opt Express ; 17(23): 21271-9, 2009 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-19997366

RESUMO

We demonstrate controllable structural color based on periodic nanopatterned 2D lattices in pure protein films of silk fibroin. We show here periodic lattices in silk fibroin films with feature sizes of hundreds of nanometers that exhibit different colors as a function of varying lattice spacing. Further, when varying the index of refraction contrast between the nanopatterned lattice and its surrounding environment by applying liquids on top of the lattices, colorimetric shifts are observed. The effect is characterized experimentally and theoretically and a simple example of glucose concentration sensing is presented. This is the first example of a functional sensor based on silk fibroin optics.


Assuntos
Materiais Biocompatíveis/química , Fibroínas/química , Nanoestruturas/química , Nanotecnologia/métodos , Seda/química , Animais , Bombyx/química , Cor , Colorimetria/métodos , Glucose/química , Microscopia Eletrônica de Varredura/métodos , Óptica e Fotônica/métodos , Polímeros/química , Propriedades de Superfície
13.
Biochemistry ; 47(44): 11490-8, 2008 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-18842006

RESUMO

We examine the structural changes during the primary photoreaction in blue-absorbing proteorhodopsin (BPR), a light-driven retinylidene proton pump, using low-temperature FTIR difference spectroscopy. Comparison of the light-induced BPR difference spectrum recorded at 80 K to that of green-absorbing proteorhodopsin (GPR) reveals that there are several differences in the BPR and GPR primary photoreactions despite the similar structure of the retinal chromophore and all-trans --> 13-cis isomerization. Strong bands near 1700 cm(-1) assigned previously to a change in hydrogen bonding of Asn230 in GPR are still present in BPR. However, additional bands in the same region are assigned on the basis of site-directed mutagenesis to changes occurring in Gln105. In the amide II region, bands are assigned on the basis of total (15)N labeling to structural changes of the protein backbone, although no such bands were previously observed for GPR. A band at 3642 cm(-1) in BPR, assigned to the OH stretching mode of a water molecule on the basis of H2(18)O substitution, appears at a different frequency than a band at 3626 cm(-1) previously assigned to a water molecule in GPR. However, the substitution of Gln105 for Leu105 in BPR leads to the appearance of both bands at 3642 and 3626 cm(-1), indicating the waters assigned in BPR and GPR exist in separate distinct locations and can coexist in the GPR-like Q105L mutant of BPR. These results indicate that there exist significant differences in the conformational changes occurring in these two types proteorhodopsin during the initial photoreaction despite their similar chromophore structures, which might reflect a different arrangement of water in the active site as well as substitution of a hydrophilic for hydrophobic residue at residue 105.


Assuntos
Rodopsina/química , Rodopsina/efeitos da radiação , Substituição de Aminoácidos , Sítios de Ligação/genética , Ligação de Hidrogênio , Modelos Moleculares , Estrutura Molecular , Mutagênese Sítio-Dirigida , Fotoquímica , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/efeitos da radiação , Rodopsina/genética , Rodopsinas Microbianas , Bases de Schiff/química , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química
14.
J Phys Chem B ; 112(40): 12776-82, 2008 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-18793010

RESUMO

Ultrafast infrared spectroscopy of N 2O is shown to be a sensitive probe of hydrophobic and aqueous sites in lipid bilayers. Distinct rates of VER of the nu 3 antisymmetric stretching mode of N 2O can be distinguished for N 2O solvated in the acyl tail, interfacial water, and bulk water regions of hydrated dioleoylphosphatidylcholine (DOPC) bilayers. The lifetime of the interfacial N 2O population is hydration-dependent. This effect is attributed to changes in the density of intermolecular states resonant with the nu 3 band ( approximately 2230 cm (-1)) resulting from oriented interfacial water molecules near the lipid phosphate. Thus, the N 2O VER rate becomes a novel and experimentally convenient tool for reporting on the structure and dynamics of interfacial water in lipids and, potentially, in other biological systems.


Assuntos
Bicamadas Lipídicas/química , Sondas Moleculares/química , Óxido Nitroso/química , Vibração , Água/química , Simulação por Computador , Espectrofotometria
15.
J Am Soc Mass Spectrom ; 29(2): 352-359, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29063478

RESUMO

Cycloidal mass analyzers are unique sector mass analyzers as they exhibit perfect double focusing, making them ideal for incorporating spatial aperture coding, which can increase the throughput of a mass analyzer without affecting the resolving power. However, the focusing properties of the cycloidal mass analyzer depend on the uniformity of the electric and magnetic fields. In this paper, finite element simulation and charged particle tracing were used to investigate the effect of field uniformity on imaging performance of a cycloidal mass analyzer. For the magnetic field, we evaluate a new permanent magnet geometry by comparing it to a traditional geometry. Results indicate that creating an aperture image in a cycloidal mass spectrometer with the same FWHM as the slit requires less than 1% variation in magnetic field strength along the ion trajectories. The new magnet design, called the opposed dipole magnet, has less than 1% field variation over an area approximately 62 × 65 mm; nearly twice the area available in a traditional design of similar size and weight. This allows ion imaging across larger detector arrays without loss of resolving power. In addition, we compare the aperture imaging quality of a traditionally used cycloidal mass spectrometer electric design with a new optimized design with improved field uniformity. Graphical abstract ᅟ.

16.
J Am Soc Mass Spectrom ; 29(2): 360-372, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29052038

RESUMO

Despite many potential applications, miniature mass spectrometers have had limited adoption in the field due to the tradeoff between throughput and resolution that limits their performance relative to laboratory instruments. Recently, a solution to this tradeoff has been demonstrated by using spatially coded apertures in magnetic sector mass spectrometers, enabling throughput and signal-to-background improvements of greater than an order of magnitude with no loss of resolution. This paper describes a proof of concept demonstration of a cycloidal coded aperture miniature mass spectrometer (C-CAMMS) demonstrating use of spatially coded apertures in a cycloidal sector mass analyzer for the first time. C-CAMMS also incorporates a miniature carbon nanotube (CNT) field emission electron ionization source and a capacitive transimpedance amplifier (CTIA) ion array detector. Results confirm the cycloidal mass analyzer's compatibility with aperture coding. A >10× increase in throughput was achieved without loss of resolution compared with a single slit instrument. Several areas where additional improvement can be realized are identified. Graphical Abstract ᅟ.

17.
J Phys Chem B ; 111(40): 11824-31, 2007 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-17880126

RESUMO

Recent studies demonstrate that photoactive proteins can react within several picoseconds to photon absorption by their chromophores. Faster subpicosecond protein responses have been suggested to occur in rhodopsin-like proteins where retinal photoisomerization may impulsively drive structural changes in nearby protein groups. Here, we test this possibility by investigating the earliest protein structural changes occurring in proteorhodopsin (PR) using ultrafast transient infrared (TIR) spectroscopy with approximately 200 fs time resolution combined with nonperturbing isotope labeling. PR is a recently discovered microbial rhodopsin similar to bacteriorhodopsin (BR) found in marine proteobacteria and functions as a proton pump. Vibrational bands in the retinal fingerprint (1175-1215 cm(-1)) and ethylenic stretching (1500-1570 cm(-1)) regions characteristic of all-trans to 13-cis chromophore isomerization and formation of a red-shifted photointermediate appear with a 500-700 fs time constant after photoexcitation. Bands characteristic of partial return to the ground state evolve with a 2.0-3.5 ps time constant. In addition, a negative band appears at 1548 cm(-1) with a time constant of 500-700 fs, which on the basis of total-15N and retinal C15D (retinal with a deuterium on carbon 15) isotope labeling is assigned to an amide II peptide backbone mode that shifts to near 1538 cm(-1) concomitantly with chromophore isomerization. Our results demonstrate that one or more peptide backbone groups in PR respond with a time constant of 500-700 fs, almost coincident with the light-driven retinylidene chromophore isomerization. The protein changes we observe on a subpicosecond time scale may be involved in storage of the absorbed photon energy subsequently utilized for proton transport.


Assuntos
Proteínas/análise , Proteínas/química , Rodopsina , Rodopsinas Microbianas , Espectrofotometria Infravermelho , Fatores de Tempo
18.
Annu Rev Anal Chem (Palo Alto Calif) ; 10(1): 141-156, 2017 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-28301752

RESUMO

The use of coded apertures in mass spectrometry can break the trade-off between throughput and resolution that has historically plagued conventional instruments. Despite their very early stage of development, coded apertures have been shown to increase throughput by more than one order of magnitude, with no loss in resolution in a simple 90-degree magnetic sector. This enhanced throughput can increase the signal level with respect to the underlying noise, thereby significantly improving sensitivity to low concentrations of analyte. Simultaneous resolution can be maintained, preventing any decrease in selectivity. Both one- and two-dimensional (2D) codes have been demonstrated. A 2D code can provide increased measurement diversity and therefore improved numerical conditioning of the mass spectrum that is reconstructed from the coded signal. This review discusses the state of development, the applications where coding is expected to provide added value, and the various instrument modifications necessary to implement coded apertures in mass spectrometers.

19.
J Am Soc Mass Spectrom ; 27(4): 578-84, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26744293

RESUMO

In order to minimize losses in signal intensity often present in mass spectrometry miniaturization efforts, we recently applied the principles of spatially coded apertures to magnetic sector mass spectrometry, thereby achieving increases in signal intensity of greater than 10× with no loss in mass resolution Chen et al. (J. Am. Soc. Mass Spectrom. 26, 1633-1640, 2015), Russell et al. (J. Am. Soc. Mass Spectrom. 26, 248-256, 2015). In this work, we simulate theoretical compatibility and demonstrate preliminary experimental compatibility of the Mattauch-Herzog mass spectrograph geometry with spatial coding. For the simulation-based theoretical assessment, COMSOL Multiphysics finite element solvers were used to simulate electric and magnetic fields, and a custom particle tracing routine was written in C# that allowed for calculations of more than 15 million particle trajectory time steps per second. Preliminary experimental results demonstrating compatibility of spatial coding with the Mattauch-Herzog geometry were obtained using a commercial miniature mass spectrograph from OI Analytical/Xylem.

20.
Adv Sci (Weinh) ; 2(10): 1500203, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27812457

RESUMO

A mentoring guide for incoming graduate students has been developed to minimize the time spent reiterating general guidance and "norms" that need to be instilled in new graduate students. This allows principal investigators and senior researchers to provide high value, customized coaching for the individual student which is where the real value of the PhD education is expressed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA