Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 175(2): 544-557.e16, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30245013

RESUMO

A major challenge in genetics is to identify genetic variants driving natural phenotypic variation. However, current methods of genetic mapping have limited resolution. To address this challenge, we developed a CRISPR-Cas9-based high-throughput genome editing approach that can introduce thousands of specific genetic variants in a single experiment. This enabled us to study the fitness consequences of 16,006 natural genetic variants in yeast. We identified 572 variants with significant fitness differences in glucose media; these are highly enriched in promoters, particularly in transcription factor binding sites, while only 19.2% affect amino acid sequences. Strikingly, nearby variants nearly always favor the same parent's alleles, suggesting that lineage-specific selection is often driven by multiple clustered variants. In sum, our genome editing approach reveals the genetic architecture of fitness variation at single-base resolution and could be adapted to measure the effects of genome-wide genetic variation in any screen for cell survival or cell-sortable markers.


Assuntos
Edição de Genes/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Saccharomyces cerevisiae/genética , Sistemas CRISPR-Cas , Mapeamento Cromossômico , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Variação Genética/genética , Vetores Genéticos , Genoma , Leveduras/genética
2.
Development ; 150(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37129010

RESUMO

Nematode molting is a remarkable process where animals must repeatedly build a new apical extracellular matrix (aECM) beneath a previously built aECM that is subsequently shed. The nuclear hormone receptor NHR-23 (also known as NR1F1) is an important regulator of C. elegans molting. NHR-23 expression oscillates in the epidermal epithelium, and soma-specific NHR-23 depletion causes severe developmental delay and death. Tissue-specific RNAi suggests that nhr-23 acts primarily in seam and hypodermal cells. NHR-23 coordinates the expression of factors involved in molting, lipid transport/metabolism and remodeling of the aECM. NHR-23 depletion causes dampened expression of a nas-37 promoter reporter and a loss of reporter oscillation. The cuticle collagen ROL-6 and zona pellucida protein NOAH-1 display aberrant annular localization and severe disorganization over the seam cells after NHR-23 depletion, while the expression of the adult-specific cuticle collagen BLI-1 is diminished and frequently found in patches. Consistent with these localization defects, the cuticle barrier is severely compromised when NHR-23 is depleted. Together, this work provides insight into how NHR-23 acts in the seam and hypodermal cells to coordinate aECM regeneration during development.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Epitélio/metabolismo , Matriz Extracelular/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo
3.
J Neurosci ; 44(29)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38830764

RESUMO

Human genetics and preclinical studies have identified key contributions of TREM2 to several neurodegenerative conditions, inspiring efforts to modulate TREM2 therapeutically. Here, we characterize the activities of three TREM2 agonist antibodies in multiple mixed-sex mouse models of Alzheimer's disease (AD) pathology and remyelination. Receptor activation and downstream signaling are explored in vitro, and active dose ranges are determined in vivo based on pharmacodynamic responses from microglia. For mice bearing amyloid-ß (Aß) pathology (PS2APP) or combined Aß and tau pathology (TauPS2APP), chronic TREM2 agonist antibody treatment had limited impact on microglia engagement with pathology, overall pathology burden, or downstream neuronal damage. For mice with demyelinating injuries triggered acutely with lysolecithin, TREM2 agonist antibodies unexpectedly disrupted injury resolution. Likewise, TREM2 agonist antibodies limited myelin recovery for mice experiencing chronic demyelination from cuprizone. We highlight the contributions of dose timing and frequency across models. These results introduce important considerations for future TREM2-targeting approaches.


Assuntos
Doença de Alzheimer , Glicoproteínas de Membrana , Microglia , Esclerose Múltipla , Receptores Imunológicos , Animais , Receptores Imunológicos/agonistas , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Glicoproteínas de Membrana/agonistas , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Camundongos , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/imunologia , Feminino , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Anticorpos/farmacologia , Humanos , Peptídeos beta-Amiloides/metabolismo , Proteínas tau/metabolismo
4.
J Neurosci Res ; 102(4): e25325, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38562056

RESUMO

Brain states (wake, sleep, general anesthesia, etc.) are profoundly associated with the spatiotemporal dynamics of brain oscillations. Previous studies showed that the EEG alpha power shifted from the occipital cortex to the frontal cortex (alpha anteriorization) after being induced into a state of general anesthesia via propofol. The sleep research literature suggests that slow waves and sleep spindles are generated locally and propagated gradually to different brain regions. Since sleep and general anesthesia are conceptualized under the same framework of consciousness, the present study examines whether alpha anteriorization similarly occurs during sleep and how the EEG power in other frequency bands changes during different sleep stages. The results from the analysis of three polysomnography datasets of 234 participants show consistent alpha anteriorization during the sleep stages N2 and N3, beta anteriorization during stage REM, and theta posteriorization during stages N2 and N3. Although it is known that the neural circuits responsible for sleep are not exactly the same for general anesthesia, the findings of alpha anteriorization in this study suggest that, at macro level, the circuits for alpha oscillations are organized in the similar cortical areas. The spatial shifts of EEG power in different frequency bands during sleep may offer meaningful neurophysiological markers for the level of consciousness.


Assuntos
Eletroencefalografia , Sono de Ondas Lentas , Humanos , Eletroencefalografia/métodos , Sono de Ondas Lentas/fisiologia , Sono/fisiologia , Fases do Sono/fisiologia , Polissonografia
5.
Mol Psychiatry ; 28(10): 4294-4306, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37248276

RESUMO

Bipolar disorder (BD) is a global medical issue, afflicting around 1% of the population with manic and depressive episodes. Despite various genetic studies, the genetic architecture and pathogenesis of BD have not been fully resolved. Besides germline variants, postzygotic mosaic variants are proposed as new candidate mechanisms contributing to BD. Here, we performed extensive deep exome sequencing (DES, ~300×) and validation experiments to investigate the roles of mosaic variants in BD with 235 BD cases (194 probands of trios and 41 single cases) and 39 controls. We found an enrichment of developmental disorder (DD) genes in the genes hit by deleterious mosaic variants in BD (P = 0.000552), including a ClinVar-registered pathogenic variant in ARID2. An enrichment of deleterious mosaic variants was also observed for autism spectrum disorder (ASD) genes (P = 0.000428). The proteins coded by the DD/ASD genes with non-synonymous mosaic variants in BD form more protein-protein interaction than expected, suggesting molecular mechanisms shared with DD/ASD but restricted to a subset of cells in BD. We also found significant enrichment of mitochondrial heteroplasmic variants, another class of mosaic variants, in mitochondrial tRNA genes in BD (P = 0.0102). Among them, recurrent m.3243 A > G variants known as causal for mitochondrial diseases were found in two unrelated BD probands with allele fractions of 5-12%, lower than in mitochondrial diseases. Despite the limitation of using peripheral tissues, our DES investigation supports the possible contribution of deleterious mosaic variants in the nuclear genome responsible for severer phenotypes, such as DD/ASD, to the risk of BD and further demonstrates that the same paradigm can be applied to the mitochondrial genome. These results, as well as the enrichment of heteroplasmic mitochondrial tRNA variants in BD, add a new piece to the understanding of the genetic architecture of BD and provide general insights into the pathological roles of mosaic variants in human diseases.


Assuntos
Transtorno do Espectro Autista , Transtorno Bipolar , Doenças Mitocondriais , Humanos , Transtorno Bipolar/genética , Transtorno do Espectro Autista/genética , Predisposição Genética para Doença/genética , Sequenciamento do Exoma
6.
Glia ; 71(5): 1247-1258, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36625077

RESUMO

Disability in multiple sclerosis (MS) is driven in part by the failure of remyelination and progressive neurodegeneration. Microglia, and specifically triggering receptor expressed on myeloid cells 2 (TREM2), a factor highly expressed in microglia, have been shown to play an important role in remyelination. Here, using a focal demyelination model in the brain, we demonstrate that demyelination is persistent in TREM2 knockout mice, lasting more than 6 weeks after lysolecithin injection and resulting in substantial neurodegeneration. We also find that TREM2 knockout mice exhibit an altered glial response following demyelination. TREM2 knockout microglia demonstrate defects in migration and phagocytosis of myelin debris. In addition, human monocyte-derived macrophages from subjects with a TREM2 mutation prevalent in human disease also show a defect in myelin debris phagocytosis. Together, we highlight the central role of TREM2 signaling in remyelination and neuroprotection. These findings provide insights into how chronic demyelination might lead to axonal damage and could help identify novel neuroprotective therapeutic targets for MS.


Assuntos
Esclerose Múltipla , Remielinização , Animais , Camundongos , Humanos , Microglia/fisiologia , Neuroproteção , Esclerose Múltipla/tratamento farmacológico , Bainha de Mielina , Camundongos Knockout , Camundongos Endogâmicos C57BL , Glicoproteínas de Membrana/genética , Receptores Imunológicos/genética
7.
J Youth Adolesc ; 51(9): 1829-1840, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35639302

RESUMO

Deviant peer affiliation predicts externalizing behavior in adolescence, but no research explores how having negative or suspicious expectations of others (i.e., distrust) may evoke or buffer against the relationship between deviant peer affiliation and externalizing behavior. The current study used data across two timepoints to investigate the impact of deviant peer affiliation and distrust on externalizing behavior 3 years later and whether race/ethnicity moderated this relationship. The sample consisted of 611 adolescents from the Project on Human Development in Chicago Neighborhoods Study (48% male; Mage = 15.5 years, SD = 1.6; 17% White; 34% Black; 49% Hispanic). Higher levels of distrust buffered against the influence of deviant peer affiliation on externalizing behaviors. Further, this buffering was evident in Black compared to White adolescents. Understanding externalizing behavior warrants considering the intersection between the person and their environment.


Assuntos
Comportamento do Adolescente , Adolescente , Comportamento do Adolescente/fisiologia , Chicago , Feminino , Humanos , Masculino , Grupo Associado
8.
Amino Acids ; 53(12): 1835-1840, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34291342

RESUMO

Δ1-Pyrroline-5-carboxylate (P5C) reductase (PYCR or P5CR) catalyzes the conversion of P5C to L-proline (Pro) with concomitant oxidation of a cofactor, NADPH or NADH. Mammalian PYCR have been studied since 1950' and currently three isozymes of human PYCR, 1, 2, and L, have been identified and characterized and their roles in genetic diseases and cancer biology have been keenly investigated. These three isozymes are encoded by three different genes localized at three different chromosomes, and catalyze NAD(P)H-dependent reduction of P5C to Pro important for the transfer of oxidizing potential across the mitochondrion and cell. The review summarizes the current understanding of these three human PYCR isozymes and their roles in diseases with a focus on cancer.


Assuntos
Isoenzimas/metabolismo , Neoplasias/metabolismo , Pirrolina Carboxilato Redutases/metabolismo , Sequência de Aminoácidos , Animais , Humanos , Mitocôndrias/metabolismo , NAD/metabolismo , NADP/metabolismo , delta-1-Pirrolina-5-Carboxilato Redutase
9.
Public Health ; 198: 273-279, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34492508

RESUMO

OBJECTIVES: The role of overcrowded and multigenerational households as a risk factor for COVID-19 remains unmeasured. The objective of this study is to examine and quantify the association between overcrowded and multigenerational households and COVID-19 in New York City (NYC). STUDY DESIGN: Cohort study. METHODS: We conducted a Bayesian ecological time series analysis at the ZIP Code Tabulation Area (ZCTA) level in NYC to assess whether ZCTAs with higher proportions of overcrowded (defined as the proportion of the estimated number of housing units with more than one occupant per room) and multigenerational households (defined as the estimated percentage of residences occupied by a grandparent and a grandchild less than 18 years of age) were independently associated with higher suspected COVID-19 case rates (from NYC Department of Health Syndromic Surveillance data for March 1 to 30, 2020). Our main measure was an adjusted incidence rate ratio (IRR) of suspected COVID-19 cases per 10,000 population. Our final model controlled for ZCTA-level sociodemographic factors (median income, poverty status, White race, essential workers), the prevalence of clinical conditions related to COVID-19 severity (obesity, hypertension, coronary heart disease, diabetes, asthma, smoking status, and chronic obstructive pulmonary disease), and spatial clustering. RESULTS: 39,923 suspected COVID-19 cases were presented to emergency departments across 173 ZCTAs in NYC. Adjusted COVID-19 case rates increased by 67% (IRR 1.67, 95% CI = 1.12, 2.52) in ZCTAs in quartile four (versus one) for percent overcrowdedness and increased by 77% (IRR 1.77, 95% CI = 1.11, 2.79) in quartile four (versus one) for percent living in multigenerational housing. Interaction between both exposures was not significant (ßinteraction = 0.99, 95% CI: 0.99-1.00). CONCLUSIONS: Overcrowdedness and multigenerational housing are independent risk factors for suspected COVID-19. In the early phase of the surge in COVID cases, social distancing measures that increase house-bound populations may inadvertently but temporarily increase SARS-CoV-2 transmission risk and COVID-19 disease in these populations.


Assuntos
COVID-19 , Teorema de Bayes , Estudos de Coortes , Humanos , SARS-CoV-2 , Fatores Socioeconômicos
10.
J Neurosci ; 39(12): 2184-2194, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30696729

RESUMO

A significant unmet need for patients with multiple sclerosis (MS) is the lack of U.S. Food and Drug Administration (FDA)-approved remyelinating therapies. We have identified a compelling remyelinating agent, bazedoxifene (BZA), a European Medicines Agency (EMA)-approved (and FDA-approved in combination with conjugated estrogens) selective estrogen receptor (ER) modulator (SERM) that could move quickly from bench to bedside. This therapy stands out as a tolerable alternative to previously identified remyelinating agents and other candidates within this family. Using an unbiased high-throughput screen, with subsequent validation in both murine and human oligodendrocyte precursor cells (OPCs) and coculture systems, we find that BZA enhances differentiation of OPCs into functional oligodendrocytes. Using an in vivo murine model of focal demyelination, we find that BZA enhances OPC differentiation and remyelination. Of critical importance, we find that BZA acts independently of its presumed target, the ER, in both in vitro and in vivo systems. Using a massive computational data integration approach, we independently identify six possible candidate targets through which SERMs may mediate their effect on remyelination. Of particular interest, we identify EBP (encoding 3ß-hydroxysteroid-Δ8,Δ7-isomerase), a key enzyme in the cholesterol biosynthesis pathway, which was previously implicated as a target for remyelination. These findings provide valuable insights into the implications for SERMs in remyelination for MS and hormonal research at large.SIGNIFICANCE STATEMENT Therapeutics targeted at remyelination failure, which results in axonal degeneration and ultimately disease progression, represent a large unmet need in the multiple sclerosis (MS) population. Here, we have validated a tolerable European Medicines Agency-approved (U.S. Food and Drug Administration-approved in combination with conjugated estrogens) selective estrogen receptor (ER) modulator (SERM), bazedoxifene (BZA), as a potent agent of oligodendrocyte precursor cell (OPC) differentiation and remyelination. SERMs, which were developed as nuclear ER-α and ER-ß agonists/antagonists, have previously been implicated in remyelination and neuroprotection, following a heavy focus on estrogens with underwhelming and conflicting results. We show that nuclear ERs are not required for SERMs to mediate their potent effects on OPC differentiation and remyelination in vivo and highlight EBP, an enzyme in the cholesterol biosynthesis pathway that could potentially act as a target for SERMs.


Assuntos
Indóis/administração & dosagem , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Oligodendroglia/efeitos dos fármacos , Receptores de Estrogênio/fisiologia , Remielinização/efeitos dos fármacos , Moduladores Seletivos de Receptor Estrogênico/administração & dosagem , Animais , Diferenciação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Masculino , Camundongos Endogâmicos C57BL , Esclerose Múltipla/tratamento farmacológico , Células Precursoras de Oligodendrócitos/fisiologia , Oligodendroglia/fisiologia
11.
Brain ; 141(1): 85-98, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29244098

RESUMO

Hypoxia can injure brain white matter tracts, comprised of axons and myelinating oligodendrocytes, leading to cerebral palsy in neonates and delayed post-hypoxic leukoencephalopathy (DPHL) in adults. In these conditions, white matter injury can be followed by myelin regeneration, but myelination often fails and is a significant contributor to fixed demyelinated lesions, with ensuing permanent neurological injury. Non-myelinating oligodendrocyte precursor cells are often found in lesions in plentiful numbers, but fail to mature, suggesting oligodendrocyte precursor cell differentiation arrest as a critical contributor to failed myelination in hypoxia. We report a case of an adult patient who developed the rare condition DPHL and made a nearly complete recovery in the setting of treatment with clemastine, a widely available antihistamine that in preclinical models promotes oligodendrocyte precursor cell differentiation. This suggested possible therapeutic benefit in the more clinically prevalent hypoxic injury of newborns, and we demonstrate in murine neonatal hypoxic injury that clemastine dramatically promotes oligodendrocyte precursor cell differentiation, myelination, and improves functional recovery. We show that its effect in hypoxia is oligodendroglial specific via an effect on the M1 muscarinic receptor on oligodendrocyte precursor cells. We propose clemastine as a potential therapy for hypoxic brain injuries associated with white matter injury and oligodendrocyte precursor cell maturation arrest.


Assuntos
Clemastina/uso terapêutico , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/etiologia , Antagonistas dos Receptores Histamínicos H1/uso terapêutico , Hipóxia Encefálica/complicações , Recuperação de Função Fisiológica/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Cerebelo/ultraestrutura , Doenças Desmielinizantes/diagnóstico por imagem , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Hipóxia Encefálica/diagnóstico por imagem , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/ultraestrutura , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Nervo Óptico/fisiopatologia , Oxigênio/farmacologia , Receptor Muscarínico M1/genética , Receptor Muscarínico M1/metabolismo
13.
Amino Acids ; 49(12): 1907-1913, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28316026

RESUMO

Peptide-derived drug discovery has experienced a remarkable resurgence in the past decade since the failure of small-molecule modulators to effectively access the large binding surfaces of intracellular protein-protein interactions as well as "undruggable" residues of certain disease-driving proteins. However, the effectiveness of peptide-based cancer therapies is being questioned in light of declines in pharmaceutical R&D efficiency. As a model of whole organism, zebrafish provide a means to develop promising peptide and protein anticancer agents in an informative, cost-effective and time-efficient manner, which also allows for surveying mechanisms of drug action and optimization of drug delivery system. This review highlights the achievements and potential of zebrafish for modelling human cancer and for peptide-based drug discovery and development. Specific challenges, possible strategies and future prospects are also discussed.


Assuntos
Antineoplásicos/uso terapêutico , Modelos Animais de Doenças , Neoplasias/tratamento farmacológico , Peptídeos/uso terapêutico , Peixe-Zebra , Animais , Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Humanos , Preparações Farmacêuticas
14.
Retina ; 37(4): 643-650, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27681001

RESUMO

PURPOSE: To assess the posterior vitreous release rates following a single, office-based intravitreal injection of expansile gas in treating vitreomacular traction. METHODS: Thirty eyes of 29 consecutive patients with symptomatic vitreomacular traction received a single, office-based intravitreal injection of up to 0.3 mL of 100% perfluoropropane (C3F8). RESULTS: Overall, vitreomacular traction release occurred in 25 of 30 eyes by the final follow-up visit (83% final release rate); furthermore, 90% (9 of 10 eyes) with diabetes mellitus released, 83% (5 of 6 eyes) with concurrent epiretinal membrane released, and 83% (5 of 6 eyes) previously treated with ocriplasmin released. Vitreomacular traction release occurred overnight in some patients and was documented on spectral domain optical coherence tomography at an average of 13 days (range, 1-62 days). The phakic release rate was 89% (16 of 18 eyes) versus a 75% pseudophakic release rate (9 of 12 eyes) (P = 0.3173). Ellipsoid zone changes on spectral domain optical coherence tomography occurred in 1 of 30 gas-treated eyes. One patient developed pupillary block. CONCLUSION: Office-based intravitreal injection of C3F8 offers an inexpensive and effective treatment for vitreomacular traction, including for patients who underwent previous ocriplasmin administration and in patients with diabetes mellitus or epiretinal membrane.


Assuntos
Meios de Contraste/administração & dosagem , Fluorocarbonos/administração & dosagem , Doenças Retinianas/tratamento farmacológico , Descolamento do Vítreo/tratamento farmacológico , Idoso , Idoso de 80 Anos ou mais , Tamponamento Interno/métodos , Feminino , Humanos , Injeções Intravítreas , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Acuidade Visual
15.
Retina ; 37(10): 1847-1858, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28106709

RESUMO

PURPOSE: To evaluate the systemic pharmacokinetics (PKs) of aflibercept, bevacizumab, and ranibizumab in patients with neovascular age-related macular degeneration (AMD), diabetic macular edema (DME), or retinal vein occlusion (RVO). METHODS: Prospective, open-label, nonrandomized clinical trial of patients with AMD, DME, or RVO who were antivascular endothelial growth factor (VEGF) naïve or had not received anti-VEGF for ≥4 months. Patients received 3 monthly intravitreal injections of aflibercept 2.0 mg, bevacizumab 1.25 mg, or ranibizumab (0.5 mg for AMD/RVO, 0.3 mg for DME). The main outcome measures were serum PKs and plasma free-VEGF concentrations after the first and third injections. RESULTS: A total of 151 patients were included. In AMD/DME/RVO, systemic exposure to each drug was highest with bevacizumab, then aflibercept, and lowest with ranibizumab. Ranibizumab cleared from the bloodstream more quickly than bevacizumab or aflibercept. Aflibercept treatment resulted in the greatest reductions in plasma free-VEGF relative to baseline levels, whereas ranibizumab treatment resulted in the smallest decreases in plasma free-VEGF. CONCLUSION: The three anti-VEGF treatments examined in this analysis demonstrated notable differences in systemic PKs. Generally, the reduction in plasma free-VEGF levels correlated with elevated levels of circulating anti-VEGF agents, with the reduction in free-VEGF levels greatest with aflibercept and least with ranibizumab.


Assuntos
Bevacizumab/farmacocinética , Retinopatia Diabética/tratamento farmacológico , Edema Macular/tratamento farmacológico , Ranibizumab/farmacocinética , Proteínas Recombinantes de Fusão/farmacocinética , Degeneração Macular Exsudativa/tratamento farmacológico , Idoso , Inibidores da Angiogênese/administração & dosagem , Inibidores da Angiogênese/farmacocinética , Bevacizumab/administração & dosagem , Retinopatia Diabética/sangue , Retinopatia Diabética/complicações , Ensaio de Imunoadsorção Enzimática , Feminino , Seguimentos , Humanos , Injeções Intravítreas , Edema Macular/sangue , Edema Macular/etiologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Ranibizumab/administração & dosagem , Receptores de Fatores de Crescimento do Endotélio Vascular/administração & dosagem , Proteínas Recombinantes de Fusão/administração & dosagem , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/sangue , Degeneração Macular Exsudativa/sangue , Degeneração Macular Exsudativa/diagnóstico
16.
Psychiatry Clin Neurosci ; 70(8): 342-50, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27106560

RESUMO

AIM: Though genetic factors play a major role in the pathophysiology of psychoses including bipolar disorder (BD) and schizophrenia, lack of well-established causative genetic mutations hampers their neurobiological studies. Darier's disease, an autosomal dominant skin disorder caused by mutations of ATP2A2 on chromosome 12q23-24.1, encoding sarco/endoplasmic reticulum calcium transporting ATPase 2 (SERCA2), reportedly cosegregates with BD. A recent genome-wide association study showed an association of schizophrenia with ATP2A2. METHODS: We sequenced all coding regions of ATP2A2 in a newly identified patient with Darier's disease and BD. In addition, we performed a literature survey to examine whether likely gene disrupting (LGD) mutations are related to psychoses. RESULTS: We identified a rare heterozygous mutation, c.1288-6A>G, at the 3' end of intron 10 in the patient. A minigene splicing assay showed that this mutation introduces a new splice site causing a frameshift and premature stop codon. A literature survey of case reports of patients with Darier's disease and psychoses revealed that the rate of LGD mutations causing frameshift, altered splicing, gain of stop codon, or loss of start codon was significantly higher among the mutations harbored by these cases (9 of 11) than that of ATP2A2 mutations for which comorbidity of psychosis was not reported (107 of 237, P = 0.026). The only non-LGD mutation (p.C560R) reported in patients with Darier's disease and BD caused decreased ATP2A2 protein expression. CONCLUSION: These results suggest that psychoses in Darier's disease may be caused by a pleiotropic effect of loss-of-function mutations of ATP2A2.


Assuntos
Transtorno Bipolar/genética , Doença de Darier/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Adulto , Feminino , Pleiotropia Genética , Humanos , Mutação
17.
J Neurophysiol ; 114(1): 80-98, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25948867

RESUMO

The evolution of a visually guided perceptual decision results from multiple neural processes, and recent work suggests that signals with different neural origins are reflected in separate frequency bands of the cortical local field potential (LFP). Spike activity and LFPs in the middle temporal area (MT) have a functional link with the perception of motion stimuli (referred to as neural-behavioral correlation). To cast light on the different neural origins that underlie this functional link, we compared the temporal dynamics of the neural-behavioral correlations of MT spikes and LFPs. Wide-band activity was simultaneously recorded from two locations of MT from monkeys performing a threshold, two-stimuli, motion pulse detection task. Shortly after the motion pulse occurred, we found that high-gamma (100-200 Hz) LFPs had a fast, positive correlation with detection performance that was similar to that of the spike response. Beta (10-30 Hz) LFPs were negatively correlated with detection performance, but their dynamics were much slower, peaked late, and did not depend on stimulus configuration or reaction time. A late change in the correlation of all LFPs across the two recording electrodes suggests that a common input arrived at both MT locations prior to the behavioral response. Our results support a framework in which early high-gamma LFPs likely reflected fast, bottom-up, sensory processing that was causally linked to perception of the motion pulse. In comparison, late-arriving beta and high-gamma LFPs likely reflected slower, top-down, sources of neural-behavioral correlation that originated after the perception of the motion pulse.


Assuntos
Percepção de Movimento/fisiologia , Córtex Visual/fisiologia , Potenciais de Ação , Animais , Ritmo beta/fisiologia , Ritmo Gama/fisiologia , Macaca mulatta , Masculino , Neurônios/fisiologia , Testes Neuropsicológicos , Estimulação Luminosa , Processamento de Sinais Assistido por Computador
18.
Amino Acids ; 47(4): 813-23, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25557051

RESUMO

The purpose of this study was to examine whether the replacement of the positively-charged Lys or Arg linker with a neutral linker could reduce the renal uptake of Arg-Gly-Asp (RGD)-conjugated alpha-melanocyte stimulating hormone (α-MSH) hybrid peptide. The RGD motif {cyclic(Arg-Gly-Asp-DTyr-Asp)} was coupled to [Cys(3,4,10), D-Phe(7), Arg(11)]α-MSH3-13 {(Arg(11))CCMSH} through the neutral ßAla or Ahx {aminohexanoic acid} linker (replacing the Lys or Arg linker) to generate novel RGD-ßAla-(Arg(11))CCMSH and RGD-Ahx-(Arg(11))CCMSH hybrid peptides. The receptor-binding affinity and cytotoxicity of RGD-ßAla-(Arg(11))CCMSH and RGD-Ahx-(Arg(11))CCMSH were determined in B16/F1 melanoma cells. The melanoma targeting and imaging properties of (99m)Tc-RGD-ßAla-(Arg(11))CCMSH and (99m)Tc-RGD-Ahx-(Arg(11))CCMSH were determined in B16/F1 melanoma-bearing C57 mice. The replacement of the Lys or Arg linker with the ßAla or Ahx linker retained nanomolar receptor-binding affinities and remarkable cytotoxicity of RGD-ßAla-(Arg(11))CCMSH and RGD-Ahx-(Arg(11))CCMSH. The receptor-binding affinities of RGD-ßAla-(Arg(11))CCMSH and RGD-Ahx-(Arg(11))CCMSH were 0.8 ± 0.05 and 1.3 ± 0.1 nM. Three-hour incubation with 0.1 µM of RGD-ßAla-(Arg(11))CCMSH and RGD-Ahx-(Arg(11))CCMSH decreased the survival percentages of B16/F1 cells by 71 and 67 % as compared to the untreated control cells 5 days post the treatment. The replacement of the Arg linker with the ßAla or Ahx linker reduced the non-specific renal uptake of (99m)Tc-RGD-ßAla-(Arg(11))CCMSH and (99m)Tc-RGD-Ahx-(Arg(11))CCMSH by 62 and 61 % at 2 h post-injection. (99m)Tc-RGD-ßAla-(Arg(11))CCMSH displayed higher melanoma uptake than (99m)Tc-RGD-Ahx-(Arg(11))CCMSH at 0.5, 2, 4, and 24 h post-injection. Enhanced tumor to kidney uptake ratio of (99m)Tc-RGD-ßAla-(Arg(11))CCMSH warranted the further evaluation of (188)Re-labeled RGD-ßAla-(Arg(11))CCMSH as a novel MC1 receptor-targeting therapeutic peptide for melanoma treatment in the future.


Assuntos
Rim/metabolismo , Melanoma/tratamento farmacológico , Oligopeptídeos/química , Compostos Radiofarmacêuticos/farmacocinética , Tecnécio/química , alfa-MSH/síntese química , alfa-MSH/farmacocinética , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Melanoma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Oligopeptídeos/metabolismo , Compostos Radiofarmacêuticos/administração & dosagem , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/química , Receptor Tipo 1 de Melanocortina/antagonistas & inibidores , Receptor Tipo 1 de Melanocortina/genética , Receptor Tipo 1 de Melanocortina/metabolismo , Tecnécio/metabolismo , Distribuição Tecidual , alfa-MSH/administração & dosagem , alfa-MSH/química
19.
Amino Acids ; 47(10): 2127-41, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25501277

RESUMO

Inflammatory bowel disease (IBD), most commonly ulcerative colitis (UC) and Crohn's disease (CD), is a chronic inflammation of the gastrointestinal tract. Patients affected with IBD experience symptoms including abdominal pain, persistent diarrhea, rectal bleeding, and weight loss. There is no cure for IBD; thus treatments typically focus on preventing complications, inducing and maintaining remission, and improving quality of life. During IBD, dysregulation of the intestinal immune system leads to increased production of pro-inflammatory cytokines, such as TNF-α and IL-6, and recruitment of activated immune cells to the intestine, causing tissue damage and perpetuating the inflammatory response. Recent biological therapies targeting specific inflammatory cytokines or pathways, in particular TNF-α, have shown promise, but not all patients respond to treatment, and some individuals become intolerant to treatment over time. Dietary peptides and amino acids (AAs) have been shown to modulate intestinal immune functions and influence inflammatory responses, and may be useful as alternative or ancillary treatments in IBD. This review focuses on dietary interventions for IBD treatment, in particular the role of dietary peptides and AAs in reducing inflammation, oxidative stress, and apoptosis in the gut, as well as recent advances in the cellular mechanisms responsible for their anti-inflammatory activity.


Assuntos
Aminoácidos/metabolismo , Dieta , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/prevenção & controle , Fragmentos de Peptídeos/uso terapêutico , Animais , Humanos
20.
Amino Acids ; 47(10): 2177-84, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25287255

RESUMO

The integrity of intestinal barrier is essential for the absorption of nutrients and health in humans and animals. Dysfunction of the mucosal barrier is associated with increased gut permeability and development of various gastrointestinal diseases. Aside from serving as substrates for protein biosynthesis, amino acids also maintain the health of intestinal mucosal barrier. However, the underlying mechanisms remain unclear. We aimed to determine the effect and mechanism of non-essential amino acid (NEAA) deprivation on intestinal tight junction permeability using porcine intestinal epithelial cells as a model. We found that NEAA deprivation led to an impairment of barrier function as evidenced by increased permeability, decreased trans-epithelial resistance, and decreased expression of tight junction proteins claudin-1 and ZO-1. Importantly, NEAA deprivation induced both apoptosis and autophagy as shown by caspase-3 activation, and poly ADP-ribose polymerase cleavage; and LC3II lipidation and p62 degradation, hallmarks of apoptosis and autophagy, respectively. Importantly, we showed that the autophagy induced by NEAA deprivation counteracts apoptosis. Abrogation of autophagy by 3-methyladenine enhanced NEAA deprivation-induced barrier dysfunction and apoptosis; whereas, activation of autophagy by rapamycin partially rescued NEAA deprivation-induced barrier dysfunction and apoptosis. Taken together, our results demonstrate a critical role of NEAA on the mucosal integrity by regulating cell death and survival signaling pathways.


Assuntos
Aminoácidos/deficiência , Autofagia , Proliferação de Células/efeitos dos fármacos , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Permeabilidade/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Intestinos/efeitos dos fármacos , Intestinos/patologia , Transdução de Sinais , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA