Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 81(1): 116, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438808

RESUMO

Microglia regulate synaptic function in various ways, including the microglial displacement of the surrounding GABAergic synapses, which provides important neuroprotection from certain diseases. However, the physiological role and underlying mechanisms of microglial synaptic displacement remain unclear. In this study, we observed that microglia exhibited heterogeneity during the displacement of GABAergic synapses surrounding neuronal soma in different cortical regions under physiological conditions. Through three-dimensional reconstruction, in vitro co-culture, two-photon calcium imaging, and local field potentials recording, we found that IL-1ß negatively modulated microglial synaptic displacement to coordinate regional heterogeneity in the motor cortex, which impacted the homeostasis of the neural network and improved motor learning ability. We used the Cre-Loxp system and found that IL-1R1 on glutamatergic neurons, rather than that on microglia or GABAergic neurons, mediated the negative effect of IL-1ß on synaptic displacement. This study demonstrates that IL-1ß is critical for the regional heterogeneity of synaptic displacement by coordinating different actions of neurons and microglia via IL-1R1, which impacts both neural network homeostasis and motor learning ability. It provides a theoretical basis for elucidating the physiological role and mechanism of microglial displacement of GABAergic synapses.


Assuntos
Aprendizagem , Microglia , Cálcio , Neurônios GABAérgicos , Interleucina-1beta , Sinapses
2.
Fundam Res ; 4(1): 188-198, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38933843

RESUMO

Chronic cerebral hypoperfusion can cause progressive demyelination as well as ischemic vascular dementia, however no effective treatments are available. Here, based on magnetic resonance imaging studies of patients with white matter damage, we found that this damage is associated with disorganized cortical structure. In a mouse model, optogenetic activation of glutamatergic neurons in the somatosensory cortex significantly promoted oligodendrocyte progenitor cell (OPC) proliferation, remyelination in the corpus callosum, and recovery of cognitive ability after cerebral hypoperfusion. The therapeutic effect of such stimulation was restricted to the upper layers of the cortex, but also spanned a wide time window after ischemia. Mechanistically, enhancement of glutamatergic neuron-OPC functional synaptic connections is required to achieve the protection effect of activating cortical glutamatergic neurons. Additionally, skin stroking, an easier method to translate into clinical practice, activated the somatosensory cortex, thereby promoting OPC proliferation, remyelination and cognitive recovery following cerebral hypoperfusion. In summary, we demonstrated that activating glutamatergic neurons in the somatosensory cortex promotes the proliferation of OPCs and remyelination to recover cognitive function after chronic cerebral hypoperfusion. It should be noted that this activation may provide new approaches for treating ischemic vascular dementia via the precise regulation of glutamatergic neuron-OPC circuits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA