Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(21): e2400893, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38520060

RESUMO

All-Van der Waals (vdW)-material-based heterostructures with atomically sharp interfaces offer a versatile platform for high-performing spintronic functionalities at room temperature. One of the key components is vdW topological insulators (TIs), which can produce a strong spin-orbit-torque (SOT) through the spin-momentum locking of their topological surface state (TSS). However, the relatively low conductance of the TSS introduces a current leakage problem through the bulk states of the TI or the adjacent ferromagnetic metal layers, reducing the interfacial charge-to-spin conversion efficiency (qICS). Here, a vdW heterostructure is used consisting of atomically-thin layers of a bulk-insulating TI Sn-doped Bi1.1Sb0.9Te2S1 and a room-temperature ferromagnet Fe3GaTe2, to enhance the relative current ratio on the TSS up to ≈20%. The resulting qICS reaches ≈1.65 nm-1 and the critical current density Jc ≈0.9 × 106 Acm-2 at 300 K, surpassing the performance of TI-based and heavy-metal-based SOT devices. These findings demonstrate that an all-vdW heterostructure with thickness optimization offers a promising platform for efficient current-controlled magnetization switching at room temperature.

2.
Adv Mater ; 34(8): e2101730, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34908193

RESUMO

Current-induced control of magnetization in ferromagnets using spin-orbit torque (SOT) has drawn attention as a new mechanism for fast and energy efficient magnetic memory devices. Energy-efficient spintronic devices require a spin-current source with a large SOT efficiency (ξ) and electrical conductivity (σ), and an efficient spin injection across a transparent interface. Herein, single crystals of the van der Waals (vdW) topological semimetal WTe2  and vdW ferromagnet Fe3 GeTe2 are used to satisfy the requirements in their all-vdW-heterostructure with an atomically sharp interface. The results exhibit values of ξ ≈ 4.6 and σ ≈ 2.25 × 105  Ω-1 m-1 for WTe2 . Moreover, the significantly reduced switching current density of 3.90 × 106 A cm-2 at 150 K is obtained, which is an order of magnitude smaller than those of conventional heavy-metal/ferromagnet thin films. These findings highlight that engineering vdW-type topological materials and magnets offers a promising route to energy-efficient magnetization control in SOT-based spintronics.

3.
Nat Commun ; 12(1): 2844, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-33990589

RESUMO

Discovery of two dimensional (2D) magnets, showing intrinsic ferromagnetic (FM) or antiferromagnetic (AFM) orders, has accelerated development of novel 2D spintronics, in which all the key components are made of van der Waals (vdW) materials and their heterostructures. High-performing and energy-efficient spin functionalities have been proposed, often relying on current-driven manipulation and detection of the spin states. In this regard, metallic vdW magnets are expected to have several advantages over the widely-studied insulating counterparts, but have not been much explored due to the lack of suitable materials. Here, we report tunable itinerant ferro- and antiferromagnetism in Co-doped Fe4GeTe2 utilizing the vdW interlayer coupling, extremely sensitive to the material composition. This leads to high TN antiferromagnetism of TN ~ 226 K in a bulk and ~210 K in 8 nm-thick nanoflakes, together with tunable magnetic anisotropy. The resulting spin configurations and orientations are sensitively controlled by doping, magnetic field, and thickness, which are effectively read out by electrical conduction. These findings manifest strong merits of metallic vdW magnets as an active component of vdW spintronic applications.

4.
ACS Appl Mater Interfaces ; 12(4): 5106-5112, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31898448

RESUMO

This work demonstrates a high-performance and hysteresis-free field-effect transistor based on two-dimensional (2D) semiconductors featuring a van der Waals heterostructure, MoS2 channel, and GaS gate insulator. The transistor exhibits a subthreshold swing of 63 mV/dec, an on/off ratio over 106 within a gate voltage of 0.4 V, and peak mobility of 83 cm2/(V s) at room temperature. The low-frequency noise characteristics were investigated and described by the Hooge mobility fluctuation model. The results suggest that the van der Waals heterostructure of 2D semiconductors can produce a high-performing interface without dangling bonds and defects caused by lattice mismatch. Furthermore, a logic inverter and a NAND gate are demonstrated, with an inverter voltage gain of 14.5, which is higher than previously reported by MoS2-based transistors with oxide dielectrics. Therefore, this transistor based on van der Waals heterostructure exhibits considerable potential in digital logic applications with low-power integrated circuits.

5.
Sci Adv ; 6(3): eaay8912, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-32010775

RESUMO

In spintronics, two-dimensional van der Waals crystals constitute a most promising material class for long-distance spin transport or effective spin manipulation at room temperature. To realize all-vdW-material-based spintronic devices, however, vdW materials with itinerant ferromagnetism at room temperature are needed for spin current generation and thereby serve as an effective spin source. We report theoretical design and experimental realization of a iron-based vdW material, Fe4GeTe2, showing a nearly room temperature ferromagnetic order, together with a large magnetization and high conductivity. These properties are well retained even in cleaved crystals down to seven layers, with notable improvement in perpendicular magnetic anisotropy. Our findings highlight Fe4GeTe2 and its nanometer-thick crystals as a promising candidate for spin source operation at nearly room temperature and hold promise to further increase T c in vdW ferromagnets by theory-guided material discovery.

6.
ACS Nano ; 10(9): 8888-94, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27526274

RESUMO

Atomically thin nanosheets, as recently realized using van der Waals layered materials, offer a versatile platform for studying the stability and tunability of the correlated electron phases in the reduced dimension. Here, we investigate a thickness-dependent excitonic insulating (EI) phase on a layered ternary chalcogenide Ta2NiSe5. Using Raman spectroscopy, scanning tunneling spectroscopy, and in-plane transport measurements, we found no significant changes in crystalline and electronic structures as well as disorder strength in ultrathin Ta2NiSe5 crystals with a thickness down to five layers. The transition temperature, Tc, of ultrathin Ta2NiSe5 is reduced from its bulk value by ΔTc/Tc(bulk) ≈ -9%, which strongly contrasts the case of 1T-TiSe2, another excitonic insulator candidate, showing an increase of Tc by ΔTc/Tc(bulk) ≈ +30%. This difference is attributed to the dominance of interband Coulomb interaction over electron-phonon interaction and its zero-ordering wave vector due to the direct band gap structure of Ta2NiSe5. The out-of-plane correlating length of the EI phase is estimated to have monolayer thickness, suggesting that the EI phase in Ta2NiSe5 is highly layer-confined and in the strong coupling limit.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA