Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 203: 111796, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34339698

RESUMO

Treatment of organic wastewater is a challenging task. Biological techniques using biocatalysts have shown their benefits in organic wastewater treatment. In this research, a novel biocatalyst was developed by encapsulation of Fe3O4 microspheres and haemoglobin (Hb) with mesoporous silica, named Fe3O4@mSiO2(Hb). Fe3O4@mSiO2(Hb) exhibited typical mesoporous characteristics (mesoporous silica), magnetic feature (Fe3O4) and peroxidase activity (Hb). The results showed that the immobilization of Hb into Fe3O4@mSiO2 did not affect its activity. In addition, Fe3O4@mSiO2(Hb) exhibited a higher efficiency in the peroxidation of aromatic compounds than free Hb. The peroxidase activity of the synthesized biocatalyst was estimated to be 120 Ug-1, which was almost four times greater than that of previously reported immobilized Hb. Also, the Km of Fe3O4@mSiO2(Hb) was similar to that of the free Hb and it was estimated to be 4.3 × 10-4 µM, indicating that the activity of the Hb in the immobilized enzyme was not affected after immobilization. The immobilized enzyme was also found to be stable, recyclable and reusable. Taken together, these results indicate that the Fe3O4@mSiO2(Hb) has good potential to be used for treating organic wastewater containing aromatic compounds. The magnetically separable novel biocatalyst developed in this study provided not only a more suitable microenvironment for retaining the activity of Hb, but also demonstrated enhanced stability and activity under unfavorable conditions.


Assuntos
Dióxido de Silício , Purificação da Água , Hemoglobinas , Magnetismo , Microesferas
2.
Biomaterials ; 301: 122217, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37423183

RESUMO

Tomato (Solanum lycopersicum L.) is a popular vegetable crop which is widely cultivated around the world. However, the production of tomatoes is threatened by several phytopathogenic agents, including gray mold (Botrytis cinerea Pers.). Biological control using fungal agents such as Clonostachys rosea plays a pivotal role in managing gray mold. However, these biological agents can negatively be influenced by environmental factors. However, immobilization is a promising approach to tackle this issue. In this research, we used a nontoxic chemical material, sodium alginate as a carrier to immobilize C. rosea. For this, sodium alginate microspheres were prepared using sodium alginate prior to embedding C. rosea. The results showed that C. rosea was successfully embedded in sodium alginate microspheres, and immobilization enhanced the stability of the fungi. The embedded C. rosea was able to suppress the growth of gray mold efficiently. In addition, the activity of stress related enzymes, peroxidase superoxidase dismutase and polyphenol oxidation was promoted in tomatoes treated with the embedded C. rosea. By measuring photosynthetic efficiency, it was noted that the embedded C. rosea has positive impacts on tomato plants. Taken together, these results indicate that immobilization of C. rosea improved its stability without detrimentally affecting its efficiency on gray mold suppression and tomato growth. The results of this research can be used as a basis for research and development of new immobilized biocontrol agents.


Assuntos
Solanum lycopersicum , Plântula , Microesferas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA