Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 230: 113142, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34990991

RESUMO

Chromium (Cr) is a toxic heavy metal that contaminates soil and water resources after its discharge from different industries. It can act as carcinogen and mutagen for biological systems. Microbe-assisted phytoremediation is one of the most emergent and environment friendly technique used for detoxification of Cr from Cr-contaminated soils. In this study, wheat as a test crop was grown under varying stress levels (0, 50, 100 and 200 mg/kg) of Cr in a pot experiment under a complete randomized design. Alleviative role of Staphylococcus aureus strain K1 was assessed by applying as a treatment in different combinations of zinc oxide nanoparticles (0, 50, 100 mg/L). Growth and yield attributes data presented nurturing impact of bacterial inoculation and ZnO NPs in improvement of wheat defense system by decreasing Cr toxicity. Increase in chlorophyll and carotenoids contents, antioxidant enzymes (SOD, POD, APX, CAT) activities and nutrient uptake also confirmed the mitigative potential of bacterial inoculation when applied solely or in combination with ZnO NPs. The Cr accumulation in different parts of plant was significantly reduced with the application of NPs and S. aureus strain K1. Taken together, the results showed that combined application of Staphylococcus aureus strain K1 and ZnO NPs detoxifies the effects of Cr on wheat plants and boosts its growth, physiology and defense system.

2.
Chemosphere ; 345: 140495, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37865204

RESUMO

Chromium (Cr) is classified as a toxic metal as it exerts harmful effects on plants and human life. Bacterial-assisted nano-phytoremediation is an emerging and environment friendly technique that can be used for the detoxification of such pollutants. In current study, pot experiment was conducted in which spinach plants were grown in soil containing chromium (0, 5, 10, 20 mgkg-1) and treated with selected strain of Bacillus sp. and Cu-O nanoparticle (CuONPs). Data related to plant's growth, physiological parameters, and biochemical tests was collected and analyzed using an appropriate statistical test. It was observed that under chromium stress, all plant's growth parameters were significantly enhanced in response to co-application of CuONPs and Bacillus sp. Similarly, higher levels of catalase, superoxide dismutase, malondialdehyde, and hydrogen peroxide were also observed. However, contents of anthocyanin, carotenoid, total chlorophyll, chlorophyll a & b, were lowered under chromium stress, which were raised in response to the combined application of CuONPs and Bacillus sp. Moreover, this co-application has significant positive effect on total soluble protein, free amino acid, and total phenolics. From this study, it was evident that combined application of Bacillus sp. and CuONP alleviated metal-induced toxicity in spinach plants. The findings from current study may provide new insights for agronomic research for the utilization of bacterial-assisted nano-phytoremediation of contaminated sites.


Assuntos
Bacillus , Nanopartículas , Poluentes do Solo , Humanos , Cromo/toxicidade , Cromo/metabolismo , Cobre/toxicidade , Cobre/metabolismo , Spinacia oleracea/metabolismo , Solo/química , Clorofila A/metabolismo , Bacillus/metabolismo , Biodegradação Ambiental , Nanopartículas/toxicidade , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo
3.
Chemosphere ; 244: 125481, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31812047

RESUMO

Cadmium (Cd) contamination of arable soils and its subsequent accumulation in food is one of the global issues which needs urgent attention. Field experiments were conducted to explore the impacts of ten silicon (Si) rich amendments on Cd bioavailability and accumulation by maize and wheat irrigated with sewage effluents. Results depicted that applied amendments decreased the total Cd accumulation in shoots and grains of both crops with and the maximum decrease was observed in rice husk biochar (RHB) treatment. The RHB was able to significantly decrease the translocation factor, Cd harvest and health risk indexes. All amendments differentially affected the soil pH, EC, CaCl2-extractable Si, and decreased the AB-DTPA-extractable soil Cd. Overall, suitable Si rich amendments (like RHB and CSB etc.) can be employed to mitigate the health risks associated with dietary Cd in untreated sewage irrigated fields. However, the cost-benefit analysis such Si rich amendments should be considered before final recommendations.


Assuntos
Agricultura/métodos , Cádmio/análise , Grão Comestível/química , Fertilizantes/análise , Medição de Risco , Silício/química , Poluentes do Solo/análise , Disponibilidade Biológica , Carvão Vegetal , Produtos Agrícolas , Oryza/crescimento & desenvolvimento , Solo , Triticum/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA