Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(19): e2221440120, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37126706

RESUMO

Geraniol derived from essential oils of various plant species is widely used in the cosmetic and perfume industries. It is also an essential trait of the pleasant smell of rose flowers. In contrast to other monoterpenes which are produced in plastids via the methyl erythritol phosphate pathway, geraniol biosynthesis in roses relies on cytosolic NUDX1 hydrolase which dephosphorylates geranyl diphosphate (GPP). However, the metabolic origin of cytosolic GPP remains unknown. By feeding Rosa chinensis "Old Blush" flowers with pathway-specific precursors and inhibitors, combined with metabolic profiling and functional characterization of enzymes in vitro and in planta, we show that geraniol is synthesized through the cytosolic mevalonate (MVA) pathway by a bifunctional geranyl/farnesyl diphosphate synthase, RcG/FPPS1, producing both GPP and farnesyl diphosphate (FPP). The downregulation and overexpression of RcG/FPPS1 in rose petals affected not only geraniol and germacrene D emissions but also dihydro-ß-ionol, the latter due to metabolic cross talk of RcG/FPPS1-dependent isoprenoid intermediates trafficking from the cytosol to plastids. Phylogenetic analysis together with functional characterization of G/FPPS orthologs revealed that the G/FPPS activity is conserved among Rosaceae species. Site-directed mutagenesis and molecular dynamic simulations enabled to identify two conserved amino acids that evolved from ancestral FPPSs and contribute to GPP/FPP product specificity. Overall, this study elucidates the origin of the cytosolic GPP for NUDX1-dependent geraniol production, provides insights into the emergence of the RcG/FPPS1 GPPS activity from the ancestral FPPSs, and shows that RcG/FPPS1 plays a key role in the biosynthesis of volatile terpenoid compounds in rose flowers.


Assuntos
Geraniltranstransferase , Rosa , Geraniltranstransferase/genética , Ácido Mevalônico/metabolismo , Rosa/metabolismo , Citosol/metabolismo , Filogenia , Terpenos/metabolismo , Flores/metabolismo
2.
Molecules ; 27(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36296396

RESUMO

Saffron is a very high value-added ingredient used in the food supplement market and contains a high level of safranal. Adding synthetic safranal to saffron, which is significantly cheaper, and falsifying the origin of saffron may represent recurrent fraud. Saffron from different countries was analyzed to determine the stable isotope ratios δ13C and δ2H from safranal by gas chromatography coupled with isotope-ratio mass spectrometry (GC-C/P-IRMS) and the concentration of saffron metabolites with ultra-high performance liquid chromatography coupled with diode array detector (UHPLC-DAD). The isotopic analysis highlighted a higher ratio of δ2H in synthetic safranal than in natural safranal; the mean values were 36‱ (+/- 40) and -210‱ (+/- 35), respectively. The δ13C between Iranian, Spanish and other saffron was significantly different and represents median values of -28.62‱, -30.12‱ and -30.70‱, respectively. Moreover, linear and quadratic discriminant analyses (LDA and QDA) were computed using the two isotope ratios of safranal and the saffron metabolites. A first QDA showed that trans-crocetin and the δ13C of safranal, picrocrocin, and crocin C3 concentrations clearly differentiated Iranian saffron from other origins. A second model identified δ13C, trans-crocetin, crocin C2, crocin C3, and picrocrocin as good predictors to discriminate saffron samples from Iran, Spain, or other origins, with a total ability score classification matrix of 100% and a prediction matrix of 82.5%. This combined approach may be a useful tool to authenticate the origin of unknown saffron.


Assuntos
Crocus , Crocus/química , Irã (Geográfico) , Extratos Vegetais/química , Cicloexenos/análise , Terpenos/análise , Isótopos/análise
3.
Rapid Commun Mass Spectrom ; 30(9): 1108-14, 2016 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-27060838

RESUMO

RATIONALE: To develop more eco-friendly laundry detergents, renewable surfactants synthesized from vegetal sources are increasingly being used. In a more stringent regulation context, the determination of bio-sourced surfactant origin thus appears essential to assess the claims of detergent manufacturers. Radiocarbon determination, the standard method for the analysis of bio-sourced materials, is an expensive technique, so there is a need for a cheaper method. METHODS: Here, the use of an elemental analyzer linked to isotope-ratio mass spectrometry (EA/IRMS) is evaluated as an alternative approach to the official method. The δ(18) O, δ(13) C and δ(2) H isotope-ratio values were determined to investigate the bio-sourced origin of surfactant raw materials and mixtures. RESULTS: A sample library of 26 commercial surfactants representative of detergent raw materials was first analyzed by EA/IRMS. The δ(18) O, δ(13) C and δ(2) H values allowed discrimination of synthetic and bio-sourced surfactants. Moreover, in this latter group, C4 plant-derived surfactants were distinguished by their δ(13) C values. Binary and ternary mixtures made of synthetic and bio-sourced surfactants were also analyzed and indicated a linear relationship between mixture isotope-ratio values and surfactant proportions. CONCLUSIONS: IRMS represents a viable alternative to radiocarbon determination for the evaluation of surfactant bio-sourced origin. It is a faster and cheaper technique, allowing discrimination of petroleum- and biomass-derived surfactants and identification of their carbon sources (C4 or C3 plants).

4.
Talanta ; 252: 123801, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35969926

RESUMO

Natural plant extracts are primarily used as raw materials in the cosmetic and perfumery industry. However, adulterations with petrochemical products are occurring in the market, leading to non-100% natural products. Several analytical techniques such as impurity detection or enantioselective ratio assessments have been previously described as good indicators to detect any addition of synthetic products, but these techniques are ineffective with novel type of synthetic pathways such as semisynthesis. In order to improve authentication, development of advanced analytical strategies such as δ18O stable isotopic ratios assessment was tested on spearmint, cinnamon and bitter almond essential oils major metabolites (carvone, (E)-cinnamaldehyde, and benzaldehyde). Natural δ18O mean values (δ18OCarvone = 18.4‰; δ18OCinnamaldehyde = 13.9‰; δ18OBenzaldehyde = 16.5‰) were found to be higher than semisynthetic origin for the 3 studied molecules (δ18OCarvone = 9.2‰; δ18OCinnamaldehyde = 8.8‰; δ18OBenzaldehyde = 10.9‰). These measurements proved to be efficient to discriminate natural and semisynthetic origins of these components and therefore potentially lead to a novel way to authenticate natural products.


Assuntos
Produtos Biológicos , Mentha spicata , Óleos Voláteis , Prunus dulcis , Óleos Voláteis/química , Cinnamomum zeylanicum , Benzaldeídos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Isótopos , Isótopos de Carbono
5.
Artigo em Inglês | MEDLINE | ID: mdl-34731745

RESUMO

Neroli essential oil (EO), extracted from bitter orange blossoms, is one of the most expensive natural products on the market due to its poor yield and its use in fragrance compositions, such as cologne. Multiple adulterations of neroli EO are found on the market, and several authentication strategies, such as enantioselective gas chromatography (GC) and isotope ratio mass spectrometry (IRMS), have been developed in the last few years. However, neroli EO adulteration is becoming increasingly sophisticated, and analytical improvements are needed to increase precision. Enantiomeric and compound-specific isotopic profiling of numerous metabolites using multidimensional GC and GC-C/P-IRMS was carried out. These analyses proved to be efficient for geographical tracing, especially to distinguish neroli EO of Egyptian origin. In addition, δ2H values and enantioselective ratios can identify an addition of 10% of petitgrain EO. These results demonstrate that enantioselective and stable isotopic metabolite fingerprint determination is currently a necessity to control EOs.


Assuntos
Isótopos de Carbono/química , Citrus/química , Deutério/química , Óleos Voláteis/química , Óleos de Plantas/química , Isótopos de Carbono/metabolismo , Cromatografia Gasosa , Citrus/metabolismo , Deutério/metabolismo , Contaminação de Medicamentos , Flores/química , Cromatografia Gasosa-Espectrometria de Massas , Óleos Voláteis/metabolismo , Óleos de Plantas/metabolismo , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA