Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Reprod Med Biol ; 21(1): e12480, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35919386

RESUMO

Background: The protein proAKAP4 is crucial for sperm motility and has been suggested as an indicator of male fertility. We determined the relationship between proAKAP4 concentration and sperm motility parameters in mice, and investigated the effects of cryopreservation on these variables. Methods: Computer-assisted sperm analysis and ELISA were applied to determine sperm motility and proAKAP4 concentration in fresh and frozen-thawed epididymal sperm of SWISS, B6D2F1, C57BL/6N, and BALB/c mice. Results: ProAKAP4 levels ranged between 12 and 89 ng/ml and did not differ between fresh and frozen-thawed samples, or between strains. We found a negative relationship between proAKAP4 levels and some sperm motility parameters. Sperm traits differed between strains, and cryopreservation negatively affected sperm velocity but not sperm direction parameters. Conclusion: ProAKAP4 levels in epididymal mouse spermatozoa were unaffected by cryopreservation, highlighting the robustness of this parameter as a potentially time-independent marker for sperm motility and fertility. The high individual variation in proAKAP4 levels supports the potential role of proAKAP4 as a marker for sperm quality, though we found no positive, and even negative relationships between proAKAP4 levels and some sperm motility parameters. Future studies have to investigate the significance of proAKAP4 as an indicator for fertility in mice.

2.
Histochem Cell Biol ; 146(4): 489-512, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27344443

RESUMO

Synapse-associated protein 1 (Syap1/BSTA) is the mammalian homologue of Sap47 (synapse-associated protein of 47 kDa) in Drosophila. Sap47 null mutant larvae show reduced short-term synaptic plasticity and a defect in associative behavioral plasticity. In cultured adipocytes, Syap1 functions as part of a complex that phosphorylates protein kinase Bα/Akt1 (Akt1) at Ser(473) and promotes differentiation. The role of Syap1 in the vertebrate nervous system is unknown. Here, we generated a Syap1 knock-out mouse and show that lack of Syap1 is compatible with viability and fertility. Adult knock-out mice show no overt defects in brain morphology. In wild-type brain, Syap1 is found widely distributed in synaptic neuropil, notably in regions rich in glutamatergic synapses, but also in perinuclear structures associated with the Golgi apparatus of specific groups of neuronal cell bodies. In cultured motoneurons, Syap1 is located in axons and growth cones and is enriched in a perinuclear region partially overlapping with Golgi markers. We studied in detail the influence of Syap1 knockdown and knockout on structure and development of these cells. Importantly, Syap1 knockout does not affect motoneuron survival or axon growth. Unexpectedly, neither knockdown nor knockout of Syap1 in cultured motoneurons is associated with reduced Ser(473) or Thr(308) phosphorylation of Akt. Our findings demonstrate a widespread expression of Syap1 in the mouse central nervous system with regionally specific distribution patterns as illustrated in particular for olfactory bulb, hippocampus, and cerebellum.


Assuntos
Encéfalo/metabolismo , Neurônios Motores/citologia , Neurônios Motores/metabolismo , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/metabolismo , Animais , Células Cultivadas , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética
3.
Transgenic Res ; 23(3): 469-75, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24482264

RESUMO

The generation of transgenic animals with a gain-of-function mutation is commonly achieved by procedures based on random DNA integration. The resulting transgenic founder lines are unique, not reproducible and have variable expression patterns. In contrast, the targeted integration of transgenes into a predetermined neutral genomic position solves most of the inadequacies of random integration methods. However, homologous recombination (HR) in mouse embryonic stem cells (ESCs) currently requires careful design of the targeting vector and a laborious procedure to identify clones with the correct insertion event. Here, we introduce a feasible strategy that employs a heterozygous double fluorescent reporter ESC line for simple identification of a knock-in HR event via detection of endogenous fluorescence expression. Following positive selection using antibiotics, the system offers a second selection step to identify targeted clones by the loss of one of two fluorescence reporters in lieu of the time consuming Southern blotting and PCR analysis routinely applied in conventional targeting experiments. Moreover, the method allows for the simple detection of chimerism (negating the need for appropriate coat colour combinations) and enables the early detection of germline transmission by fluorescence reporter expression in F1 neonates.


Assuntos
Células-Tronco Embrionárias , Recombinação Homóloga/genética , Camundongos Transgênicos/genética , Transgenes , Animais , Fluorescência , Regulação da Expressão Gênica , Vetores Genéticos , Genoma , Camundongos
4.
Front Immunol ; 13: 967914, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36110849

RESUMO

MicroRNAs are small non-coding RNAs that have emerged as post-transcriptional regulators involved in development and function of different types of immune cells, and aberrant miRNA expression has often been linked to cancer. One prominent miRNA family in the latter setting is the miR-15 family, consisting of the three clusters miR-15a/16-1, miR-15b/16-2 and miR-497/195, which is best known for its prominent tumor suppressive role in chronic lymphocytic leukemia (CLL). However, little is known about the physiological role of the miR-15 family. In this study, we provide a comprehensive in vivo analysis of the physiological functions of miR-15a/16-1 and miR-15b/16-2, both of which are highly expressed in immune cells, in early B cell development. In particular, we report a previously unrecognized physiological function of the miR-15 family in restraining progenitor B cell expansion, as loss of both clusters induces an increase of the pro-B as well as pre-B cell compartments. Mechanistically, we find that the miR-15 family mediates its function through repression of at least two different types of target genes: First, we confirm that the miR-15 family suppresses several prominent cell cycle regulators such as Ccne1, Ccnd3 and Cdc25a also in vivo, thereby limiting the proliferation of progenitor B cells. Second, this is complemented by direct repression of the Il7r gene, which encodes the alpha chain of the IL-7 receptor (IL7R), one of the most critical growth factor receptors for early B cell development. In consequence, deletion of the miR-15a/16-1 and miR-15b/16-2 clusters stabilizes Il7r transcripts, resulting in enhanced IL7R surface expression. Consistently, our data show an increased activation of PI3K/AKT, a key signaling pathway downstream of the IL7R, which likely drives the progenitor B cell expansion we describe here. Thus, by deregulating a target gene network of cell cycle and signaling mediators, loss of the miR-15 family establishes a pro-proliferative milieu that manifests in an enlarged progenitor B cell pool.


Assuntos
MicroRNAs , Receptores de Interleucina-7 , Proliferação de Células/genética , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Receptores de Interleucina-7/genética
5.
FEBS J ; 288(5): 1533-1545, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32705746

RESUMO

MicroRNAs (miRNAs) post-transcriptionally repress almost all genes in mammals and thereby form an additional layer of gene regulation. As such, miRNAs impact on nearly every physiological process and have also been associated with cancer. Prominent examples of such miRNAs can be found in the miR-15 family, composed of the bicistronic clusters miR-15a/16-1, miR-15b/16-2, and miR-497/195. In particular, the miR-15a/16-1 cluster is deleted in almost two thirds of all chronic B lymphocytic leukemia (CLL) cases, a phenotype that is also recapitulated by miR-15a/16-1-deficient as well as miR-15b/16-2-deficient mice. Under physiological conditions, those two clusters have been implicated in T-cell function, and B-cell and natural killer (NK) cell development; however, it is unclear whether miR-497 and miR-195 confer similar roles in health and disease. Here, we have generated a conditional mouse model for tissue-specific deletion of miR-497 and miR-195. While mice lacking miR-15a/16-1 in the hematopoietic compartment developed clear signs of CLL over time, aging mice deficient for miR-497/195 did not show such a phenotype. Likewise, loss of miR-15a/16-1 impaired NK and early B-cell development, whereas miR-497/195 was dispensable for these processes. In fact, a detailed analysis of miR-497/195-deficient mice did not reveal any effect on steady-state hematopoiesis or immune cell function. Unexpectedly, even whole-body deletion of the cluster was well-tolerated and had no obvious impact on embryonic development or healthy life span. Therefore, we postulate that the miR-497/195 cluster is redundant to its paralog clusters or that its functional relevance is restricted to certain physiological and pathological conditions.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/imunologia , Leucemia Linfocítica Crônica de Células B/genética , MicroRNAs/genética , Animais , Animais Geneticamente Modificados , Linfócitos B/imunologia , Linfócitos B/patologia , Medula Óssea/imunologia , Medula Óssea/patologia , Proliferação de Células , Modelos Animais de Doenças , Feminino , Edição de Genes/métodos , Homeostase/genética , Homeostase/imunologia , Humanos , Imunofenotipagem , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/patologia , Leucemia Linfocítica Crônica de Células B/imunologia , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Linfocítica Crônica de Células B/patologia , Linfonodos/imunologia , Linfonodos/patologia , Masculino , Camundongos , MicroRNAs/imunologia , Células-Tronco Embrionárias Murinas/imunologia , Células-Tronco Embrionárias Murinas/patologia , Deleção de Sequência , Transdução de Sinais , Análise de Célula Única/métodos , Baço/imunologia , Baço/patologia , Linfócitos T/imunologia , Linfócitos T/patologia
6.
Cell Rep ; 35(12): 109274, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34161767

RESUMO

Mosaic analysis with double markers (MADM) offers one approach to visualize and concomitantly manipulate genetically defined cells in mice with single-cell resolution. MADM applications include the analysis of lineage, single-cell morphology and physiology, genomic imprinting phenotypes, and dissection of cell-autonomous gene functions in vivo in health and disease. Yet, MADM can only be applied to <25% of all mouse genes on select chromosomes to date. To overcome this limitation, we generate transgenic mice with knocked-in MADM cassettes near the centromeres of all 19 autosomes and validate their use across organs. With this resource, >96% of the entire mouse genome can now be subjected to single-cell genetic mosaic analysis. Beyond a proof of principle, we apply our MADM library to systematically trace sister chromatid segregation in distinct mitotic cell lineages. We find striking chromosome-specific biases in segregation patterns, reflecting a putative mechanism for the asymmetric segregation of genetic determinants in somatic stem cell division.


Assuntos
Biblioteca Gênica , Genoma , Mosaicismo , Análise de Célula Única , Polipose Adenomatosa do Colo/metabolismo , Células-Tronco Adultas/metabolismo , Animais , Cromátides/genética , Segregação de Cromossomos , Cromossomos de Mamíferos/genética , Modelos Animais de Doenças , Marcadores Genéticos , Impressão Genômica , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mitose , Modelos Biológicos , Neoplasias/genética , Neoplasias/patologia , Fenótipo , Recombinação Genética/genética , Nicho de Células-Tronco , Dissomia Uniparental
7.
Dev Biol ; 311(1): 223-37, 2007 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17916349

RESUMO

Neurogenesis in the developing neocortex is a strictly regulated process of cell division and differentiation. Here we report that a gradual retreat of canonical Wnt signaling in the cortex from lateral-to-medial and anterior-to-posterior is a prerequisite of neurogenesis. Ectopic expression of a beta-catenin/LEF1 fusion protein maintains active canonical Wnt signaling in the developing cortex and delays the expression onset of the neurogenic factors Pax6, Ngn2 and Tbr2 and subsequent neurogenesis. Contrary to this, conditional ablation of beta-catenin accelerates expression of the same neurogenic genes. Furthermore, we show that a sustained canonical Wnt activity in the lateral cortex gives rise to cells with hippocampal characteristics in the cortical plate at the expense of the cortical fate, and to cells with dentate gyrus characteristics in the hippocampus. This suggests that the dose of canonical Wnt signaling determines cellular fate in the developing cortex and hippocampus, and that recession of Wnt signaling acts as a morphogenetic gradient regulating neurogenesis in the cortex.


Assuntos
Hipocampo/citologia , Hipocampo/embriologia , Morfogênese , Transdução de Sinais , Proteínas Wnt/metabolismo , Animais , Sistema Nervoso Central/embriologia , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA