Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Anal Bioanal Chem ; 414(8): 2607-2618, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35091761

RESUMO

The lateral flow assay (LFA) is one of the most popular technologies on the point-of-care diagnostics market due to its low cost and ease of use, with applications ranging from pregnancy to environmental toxins to infectious disease. While the use of these tests is relatively straightforward, significant development time and effort are required to create tests that are both sensitive and specific. Workflows to guide the LFA development process exist but moving from target selection to an LFA that is ready for field testing can be labor intensive, resource heavy, and time consuming. To reduce the cost and the duration of the LFA development process, we introduce a novel development platform centered on the flexibility, speed, and throughput of an automated robotic liquid handling system. The system comprises LFA-specific hardware and software that enable large optimization experiments with discrete and continuous variables such as antibody pair selection or reagent concentration. Initial validation of the platform was demonstrated during development of a malaria LFA but was readily expanded to encompass development of SARS-CoV-2 and Mycobacterium tuberculosis LFAs. The validity of the platform, where optimization experiments are run directly on LFAs rather than in solution, was based on a direct comparison between the robotic system and a more traditional ELISA-like method. By minimizing hands-on time, maximizing experiment size, and enabling improved reproducibility, the robotic system improved the quality and quantity of LFA assay development efforts.


Assuntos
COVID-19/diagnóstico , Imunoensaio/instrumentação , Malária/diagnóstico , Testes Imediatos , Tuberculose/diagnóstico , Teste Sorológico para COVID-19/economia , Teste Sorológico para COVID-19/instrumentação , Desenho de Equipamento , Humanos , Imunoensaio/economia , Mycobacterium tuberculosis/isolamento & purificação , Plasmodium/isolamento & purificação , Testes Imediatos/economia , Reprodutibilidade dos Testes , SARS-CoV-2/isolamento & purificação , Sensibilidade e Especificidade , Fatores de Tempo
2.
Anal Chem ; 92(16): 11305-11309, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32605363

RESUMO

The SARS-CoV-2 pandemic has created an unprecedented need for rapid diagnostic testing to enable the efficient treatment and mitigation of COVID-19. The primary diagnostic tool currently employed is reverse transcription polymerase chain reaction (RT-PCR), which can have good sensitivity and excellent specificity. Unfortunately, implementation costs and logistical problems with reagents during the global SARS-CoV-2 pandemic have hindered its universal on demand adoption. Lateral flow assays (LFAs) represent a class of diagnostic that, if sufficiently clinically sensitive, may fill many of the gaps in the current RT-PCR testing regime, especially in low- and middle-income countries (LMICs). To date, many serology LFAs have been developed, though none meet the performance requirements necessary for diagnostic use cases, primarily due to the relatively long delay between infection and seroconversion. However, on the basis of previously reported results from SARS-CoV-1, antigen-based SARS-CoV-2 assays may have significantly better clinical sensitivity than serology assays. To date, only a very small number of antigen-detecting LFAs have been developed. Development of a half-strip LFA is a useful first step in the development of any LFA format. In this work, we present a half-strip LFA using commercially available antibodies for the detection of SARS-CoV-2. We have tested this LFA in buffer and measured an LOD of 0.65 ng/mL (95% CI of 0.53 to 0.77 ng/mL) ng/mL with recombinant antigen using an optical reader with sensitivity equivalent to a visual read. Further development, including evaluating the appropriate sample matrix, will be required for this assay approach to be made useful in a point of care setting, though this half-strip LFA may serve as a useful starting point for others developing similar tests.


Assuntos
Betacoronavirus/metabolismo , Infecções por Coronavirus/diagnóstico , Imunoensaio/métodos , Nucleocapsídeo/imunologia , Pneumonia Viral/diagnóstico , Sistemas Automatizados de Assistência Junto ao Leito , Anticorpos Antivirais/sangue , Antígenos/imunologia , Betacoronavirus/isolamento & purificação , COVID-19 , Infecções por Coronavirus/virologia , Humanos , Limite de Detecção , Pandemias , Pneumonia Viral/virologia , SARS-CoV-2
3.
Anal Chem ; 92(5): 3535-3543, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-31999432

RESUMO

Immunoassays are important for the detection of proteins to enable disease identification and monitor treatment, but many immunoassays suffer from sensitivity limitations. The development of digital assays has enabled highly sensitive biomarker detection and quantification, but the necessary devices typically require precisely controlled volumes to reduce biases in concentration estimates from compartment size variation. These constraints have led to systems that are often expensive, cumbersome, and challenging to operate, confining many digital assays to centralized laboratories. To overcome these limitations, we have developed a simplified digital immunoassay performed in polydisperse droplets that are prepared without any specialized equipment. This polydisperse digital droplet immunoassay (ddIA) uses proximity ligation to remove the need for wash steps and simplifies the system to a single reagent addition step. Using interleukin-8 (IL-8) as an example analyte, we demonstrated the concept with samples in buffer and diluted whole blood with limits of detection of 0.793 pM and 1.54 pM, respectively. The development of a one-pot, washless assay greatly improves usability compared to traditional immunoassays or digital-based systems that rely heavily on wash steps and can be run with common and readily available laboratory equipment such as a heater and simple fluorescent microscope. We also developed a stochastic model with physically meaningful parameters that can be utilized to optimize the assay and enable quantification without standard curves, after initial characterization of the parameters. Our polydisperse ddIA assay serves as an example of sensitive, lower-cost, and simpler immunoassays suitable for both laboratory and point-of-care applications.


Assuntos
Imunoensaio/instrumentação , Dispositivos Lab-On-A-Chip , Interleucina-8/análise , Limite de Detecção
4.
Anal Chem ; 89(12): 6608-6615, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28499086

RESUMO

Influenza is a ubiquitous and recurring infection that results in approximately 500 000 deaths globally each year. Commercially available rapid diagnostic tests are based upon detection of the influenza nucleoprotein, which are limited in that they are unable to differentiate by species and require an additional viral lysis step. Sample preprocessing can be minimized or eliminated by targeting the intact influenza virus, thereby reducing assay complexity and leveraging the large number of hemagglutinin proteins on the surface of each virus. Here, we report the development of a paper-based influenza assay that targets the hemagglutinin protein; the assay employs a combination of antibodies and novel computationally designed, recombinant affinity proteins as the capture and detection agents. This system leverages the customizability of recombinant protein design to target the conserved receptor-binding pocket of the hemagglutinin protein and to match the trimeric nature of hemagglutinin for improved avidity. Using this assay, we demonstrate the first instance of intact influenza virus detection using a combination of antibody and affinity proteins within a porous network. The recombinant head region binder based assays yield superior analytical sensitivity as compared to the antibody based assay, with lower limits of detection of 3.54 × 107 and 1.34 × 107 CEID50/mL for the mixed and all binder stacks, respectively. Not only does this work describe the development of a novel influenza assay, it also demonstrates the power of recombinant affinity proteins for use in rapid diagnostic assays.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/análise , Orthomyxoviridae/isolamento & purificação , Papel , Anticorpos Monoclonais/imunologia , Ouro/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Nanopartículas Metálicas/química , Modelos Moleculares
5.
Anal Chem ; 89(11): 5776-5783, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28445636

RESUMO

A prototype of a self-contained, automated, disposable device for chemically amplified protein-based detection of influenza virus from nasal swab specimens was developed and evaluated in a clinical setting. The device required only simple specimen manipulation without any dedicated instrumentation or specialized training by the operator for interpretation. The device was based on a sandwich immunoassay for influenza virus nucleoprotein; it used an enzyme-labeled antibody and a chromogenic substrate to provide an amplified visible signal, in a two-dimensional paper network format. All reagents were stored within the device. Device performance was assessed at Seattle Children's Hospital; clinical staff collected nasal swab samples from 25 patients and then operated test devices on site to detect influenza A and B in those specimens. The total test time from device initiation to result was approximately 35 min. Device performance for influenza A detection was ∼70% accurate using in-house qRT-PCR influenza A as a gold-standard comparison. The ratio of valid to total completed device runs yielded a success rate of 92%, and the negative predictive value for both the influenza A and B assay was 81%. The ability to diagnose respiratory infections rapidly and close to the patient was well received by hospital staff, inspiring further optimization of device function.


Assuntos
Influenza Humana/diagnóstico , Manejo de Espécimes/métodos , Proteínas Virais/análise , Testes Diagnósticos de Rotina/instrumentação , Humanos , Imunoensaio/instrumentação , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza B/isolamento & purificação , Nucleoproteínas/análise , Fatores de Tempo
6.
Anal Bioanal Chem ; 408(5): 1335-46, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26427504

RESUMO

To enable enhanced paper-based diagnostics with improved detection capabilities, new methods are needed to immobilize affinity reagents to porous substrates, especially for capture molecules other than IgG. To this end, we have developed and characterized three novel methods for immobilizing protein-based affinity reagents to nitrocellulose membranes. We have demonstrated these methods using recombinant affinity proteins for the influenza surface protein hemagglutinin, leveraging the customizability of these recombinant "flu binders" for the design of features for immobilization. The three approaches shown are: (1) covalent attachment of thiolated affinity protein to an epoxide-functionalized nitrocellulose membrane, (2) attachment of biotinylated affinity protein through a nitrocellulose-binding streptavidin anchor protein, and (3) fusion of affinity protein to a novel nitrocellulose-binding anchor protein for direct coupling and immobilization. We also characterized the use of direct adsorption for the flu binders, as a point of comparison and motivation for these novel methods. Finally, we demonstrated that these novel methods can provide improved performance to an influenza hemagglutinin assay, compared to a traditional antibody-based capture system. Taken together, this work advances the toolkit available for the development of next-generation paper-based diagnostics.


Assuntos
Proteínas de Transporte/metabolismo , Cromatografia de Afinidade/métodos , Colódio/metabolismo , Proteínas Imobilizadas/metabolismo , Papel , Proteínas Recombinantes/metabolismo , Estreptavidina/metabolismo , Anticorpos/química , Anticorpos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/química , Colódio/química , Proteínas Imobilizadas/química , Proteínas Recombinantes/química , Estreptavidina/química
7.
PLoS One ; 16(11): e0258819, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34758052

RESUMO

Inexpensive, simple, rapid diagnostics are necessary for efficient detection, treatment, and mitigation of COVID-19. Assays for SARS-CoV2 using reverse transcription polymerase chain reaction (RT-PCR) offer good sensitivity and excellent specificity, but are expensive, slowed by transport to centralized testing laboratories, and often unavailable. Antigen-based assays are inexpensive and can be rapidly mass-produced and deployed at point-of-care, with lateral flow assays (LFAs) being the most common format. While various manufacturers have produced commercially available SARS-Cov2 antigen LFAs, access to validated tests remains difficult or cost prohibitive in low-and middle-income countries. Herein, we present a visually read open-access LFA (OA-LFA) using commercially-available antibodies and materials for the detection of SARS-CoV-2. The LFA yielded a Limit of Detection (LOD) of 4 TCID50/swab of gamma irradiated SARS-CoV-2 virus, meeting the acceptable analytical sensitivity outlined by in World Health Organization target product profile. The open-source architecture presented in this manuscript provides a template for manufacturers around the globe to rapidly design a SARS-CoV2 antigen test.


Assuntos
Antígenos Virais/imunologia , Teste para COVID-19/métodos , COVID-19/diagnóstico , COVID-19/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , SARS-CoV-2/imunologia , COVID-19/virologia , Humanos , Limite de Detecção , Sistemas Automatizados de Assistência Junto ao Leito , RNA Viral/imunologia , Sensibilidade e Especificidade
8.
PLoS One ; 16(8): e0256352, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34403456

RESUMO

Rapid tests for SARS-COV-2 infection are important tools for pandemic control, but current rapid tests are based on proprietary designs and reagents. We report clinical validation results of an open-access lateral flow assay (OA-LFA) design using commercially available materials and reagents, along with RT-qPCR and commercially available comparators (BinaxNOW® and Sofia®). Adult patients with suspected COVID-19 based on clinical signs and symptoms, and with symptoms ≤7 days duration, underwent anterior nares (AN) sampling for the OA-LFA, Sofia®, BinaxNOW ™, and RT-qPCR, along with nasopharyngeal (NP) RT-qPCR. Results indicate a positive predictive agreement with NP sampling as 69% (60% -78%) OA-LFA, 74% (64% - 82%) Sofia®, and 82% (73% - 88%) BinaxNOW™. The implication for these results is that we provide an open-access LFA design that meets the minimum WHO target product profile for a rapid test, that virtually any diagnostic manufacturer could produce.


Assuntos
Antígenos Virais/análise , COVID-19/diagnóstico , Imunoensaio , SARS-CoV-2/metabolismo , Área Sob a Curva , COVID-19/virologia , Humanos , Nasofaringe/virologia , Sistemas Automatizados de Assistência Junto ao Leito , RNA Viral/análise , RNA Viral/metabolismo , Curva ROC , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2/isolamento & purificação , Sensibilidade e Especificidade
9.
ACS Omega ; 6(39): 25116-25123, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34608447

RESUMO

The global COVID-19 pandemic has created an urgent demand for large numbers of inexpensive, accurate, rapid, point-of-care diagnostic tests. Analyte-based assays are suitably rapid and inexpensive and can be rapidly mass-produced, but for sufficiently accurate performance, they require highly optimized antibodies and assay conditions. We used an automated liquid handling system, customized to handle arrays of lateral flow (immuno)assays (LFAs) in a high-throughput screen, to identify anti-nucleocapsid antibodies that will perform optimally in an LFA. We tested 1021 anti-nucleocapsid antibody pairs as LFA capture and detection reagents with the goal of highlighting pairs that have the greatest affinity for the nucleocapsid protein of SARS-CoV-2 within the LFA format. In contrast to traditional antibody screening methods (e.g., ELISA, bio-layer interferometry), the method described here integrates real-time reaction kinetics with transport in, and immobilization directly onto, nitrocellulose. We have identified several candidate antibody pairs that are suitable for further development of an LFA for SARS-CoV-2.

10.
Lab Chip ; 19(5): 885-896, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30724293

RESUMO

Influenza is a viral respiratory tract infection responsible for up to 5 million cases of severe infection and nearly 600 000 deaths worldwide each year. While treatments for influenza exist, diagnostics for the virus at the point of care are limited in their sensitivity and ability to differentiate between subtypes. We have developed an integrated two-dimensional paper network (2DPN) for the detection of the influenza virus by the surface glycoprotein, hemagglutinin. The hemagglutinin assay was developed using proteins computationally designed to bind with high affinity to the highly-conserved sialic acid binding site. The integrated 2DPN uses a novel geometry that allows automated introduction of an enzymatic amplification reagent directly to the detection zone. This assay was integrated into a prototype device and demonstrated successful detection of clinically relevant virus concentrations spiked into 70 µL of virus-free pediatric nasal swab samples. Using this novel geometry, we found improved assay performance on the device (compared to a manually-operated dipstick method), with a sensitivity of 4.45 × 102 TCID50 per mL on device.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/análise , Influenza Humana/diagnóstico , Técnicas de Diagnóstico Molecular/instrumentação , Humanos , Papel , Sistemas Automatizados de Assistência Junto ao Leito
11.
Methods Enzymol ; 589: 383-411, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28336071

RESUMO

The design of appropriate diagnostic assays for the point of care requires development of suitable biosensors, detection methods, and diagnostic platforms for sensitive, quantitative detection of biological analytes. Protein targets in particular are especially challenging to detect quantitatively and sensitively due to the lack of amplification strategies akin to nucleic acid amplification. However, recent advances in transducer and biosensor design, new detection labels, and paper-based microfluidics may realize the goal of sensitive, fast, portable, and low-cost protein detection. In this review, we discuss the biochemistry, optics, and engineering advances that may be leveraged to design such a sensitive protein diagnostic assay. The binding kinetics, mechanisms of binding in porous networks, and potential transducers are explained in detail. We discuss the relative merits of various optical detection strategies, potential detection labels, optical readout approaches, and image-processing techniques that are amenable to point-of-care use. To conclude, we present a systematic analysis of potential approaches to enhance the sensitivity of paper-based assays. The assay development framework presented here provides bioassay developers a strategy to methodically enhance the sensitivity and point-of-care suitability of protein diagnostics.


Assuntos
Técnicas Biossensoriais/métodos , Técnicas Analíticas Microfluídicas/métodos , Sistemas Automatizados de Assistência Junto ao Leito , Proteínas/análise , Animais , Técnicas Biossensoriais/instrumentação , Desenho de Equipamento , Humanos , Imunoensaio/instrumentação , Imunoensaio/métodos , Medições Luminescentes/instrumentação , Medições Luminescentes/métodos , Técnicas Analíticas Microfluídicas/instrumentação , Papel
12.
Nat Biotechnol ; 35(7): 667-671, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28604661

RESUMO

Many viral surface glycoproteins and cell surface receptors are homo-oligomers, and thus can potentially be targeted by geometrically matched homo-oligomers that engage all subunits simultaneously to attain high avidity and/or lock subunits together. The adaptive immune system cannot generally employ this strategy since the individual antibody binding sites are not arranged with appropriate geometry to simultaneously engage multiple sites in a single target homo-oligomer. We describe a general strategy for the computational design of homo-oligomeric protein assemblies with binding functionality precisely matched to homo-oligomeric target sites. In the first step, a small protein is designed that binds a single site on the target. In the second step, the designed protein is assembled into a homo-oligomer such that the designed binding sites are aligned with the target sites. We use this approach to design high-avidity trimeric proteins that bind influenza A hemagglutinin (HA) at its conserved receptor binding site. The designed trimers can both capture and detect HA in a paper-based diagnostic format, neutralizes influenza in cell culture, and completely protects mice when given as a single dose 24 h before or after challenge with influenza.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/ultraestrutura , Modelos Químicos , Simulação de Acoplamento Molecular , Engenharia de Proteínas/métodos , Multimerização Proteica , Sítios de Ligação , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA