Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
2.
Nature ; 470(7335): 518-21, 2011 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-21350483

RESUMO

The potential for increased drought frequency and severity linked to anthropogenic climate change in the semi-arid regions of the southwestern United States (US) is a serious concern. Multi-year droughts during the instrumental period and decadal-length droughts of the past two millennia were shorter and climatically different from the future permanent, 'dust-bowl-like' megadrought conditions, lasting decades to a century, that are predicted as a consequence of warming. So far, it has been unclear whether or not such megadroughts occurred in the southwestern US, and, if so, with what regularity and intensity. Here we show that periods of aridity lasting centuries to millennia occurred in the southwestern US during mid-Pleistocene interglacials. Using molecular palaeotemperature proxies to reconstruct the mean annual temperature (MAT) in mid-Pleistocene lacustrine sediment from the Valles Caldera, New Mexico, we found that the driest conditions occurred during the warmest phases of interglacials, when the MAT was comparable to or higher than the modern MAT. A collapse of drought-tolerant C(4) plant communities during these warm, dry intervals indicates a significant reduction in summer precipitation, possibly in response to a poleward migration of the subtropical dry zone. Three MAT cycles ∼2 °C in amplitude occurred within Marine Isotope Stage (MIS) 11 and seem to correspond to the muted precessional cycles within this interglacial. In comparison with MIS 11, MIS 13 experienced higher precessional-cycle amplitudes, larger variations in MAT (4-6 °C) and a longer period of extended warmth, suggesting that local insolation variations were important to interglacial climatic variability in the southwestern US. Comparison of the early MIS 11 climate record with the Holocene record shows many similarities and implies that, in the absence of anthropogenic forcing, the region should be entering a cooler and wetter phase.


Assuntos
Clima , Secas/história , Cálcio/análise , Carbono/análise , Dióxido de Carbono/análise , Secas/estatística & dados numéricos , Fósseis , Água Doce , Sedimentos Geológicos/análise , Sedimentos Geológicos/química , Aquecimento Global/estatística & dados numéricos , História Antiga , Atividades Humanas , New Mexico , Desenvolvimento Vegetal , Plantas/metabolismo , Pólen/química , Chuva , Estações do Ano , Microbiologia do Solo , Temperatura , Fatores de Tempo
3.
Proc Natl Acad Sci U S A ; 109(9): E535-43, 2012 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-22334650

RESUMO

Understanding the causes and consequences of wildfires in forests of the western United States requires integrated information about fire, climate changes, and human activity on multiple temporal scales. We use sedimentary charcoal accumulation rates to construct long-term variations in fire during the past 3,000 y in the American West and compare this record to independent fire-history data from historical records and fire scars. There has been a slight decline in burning over the past 3,000 y, with the lowest levels attained during the 20th century and during the Little Ice Age (LIA, ca. 1400-1700 CE [Common Era]). Prominent peaks in forest fires occurred during the Medieval Climate Anomaly (ca. 950-1250 CE) and during the 1800s. Analysis of climate reconstructions beginning from 500 CE and population data show that temperature and drought predict changes in biomass burning up to the late 1800s CE. Since the late 1800s , human activities and the ecological effects of recent high fire activity caused a large, abrupt decline in burning similar to the LIA fire decline. Consequently, there is now a forest "fire deficit" in the western United States attributable to the combined effects of human activities, ecological, and climate changes. Large fires in the late 20th and 21st century fires have begun to address the fire deficit, but it is continuing to grow.


Assuntos
Incêndios/história , Biomassa , Carvão Vegetal/análise , Mudança Climática/história , Secas , Sedimentos Geológicos/análise , História do Século XV , História do Século XVI , História do Século XVII , História do Século XVIII , História do Século XIX , História do Século XX , História do Século XXI , História Antiga , História Medieval , Atividades Humanas/história , Atividades Humanas/tendências , Humanos , Sudoeste dos Estados Unidos , Temperatura , Árvores/crescimento & desenvolvimento
4.
Anthropocene Rev ; 10(1): 116-145, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37213212

RESUMO

Cores from Searsville Lake within Stanford University's Jasper Ridge Biological Preserve, California, USA, are examined to identify a potential GSSP for the Anthropocene: core JRBP2018-VC01B (944.5 cm-long) and tightly correlated JRBP2018-VC01A (852.5 cm-long). Spanning from 1900 CE ± 3 years to 2018 CE, a secure chronology resolved to the sub-annual level allows detailed exploration of the Holocene-Anthropocene transition. We identify the primary GSSP marker as first appearance of 239,240Pu (372-374 cm) in JRBP2018-VC01B and designate the GSSP depth as the distinct boundary between wet and dry season at 366 cm (6 cm above the first sample containing 239,240Pu) and corresponding to October-December 1948 CE. This is consistent with a lag of 1-2 years between ejection of 239,240Pu into the atmosphere and deposition. Auxiliary markers include: first appearance of 137Cs in 1958; late 20th-century decreases in δ15N; late 20th-century elevation in SCPs, Hg, Pb, and other heavy metals; and changes in abundance and presence of ostracod, algae, rotifer and protozoan microfossils. Fossil pollen document anthropogenic landscape changes related to logging and agriculture. As part of a major university, the Searsville site has long been used for research and education, serves users locally to internationally, and is protected yet accessible for future studies and communication about the Anthropocene. Plain Word Summary: The Global boundary Stratotype Section and Point (GSSP) for the proposed Anthropocene Series/Epoch is suggested to lie in sediments accumulated over the last ~120 years in Searsville Lake, Woodside, California, USA. The site fulfills all of the ideal criteria for defining and placing a GSSP. In addition, the Searsville site is particularly appropriate to mark the onset of the Anthropocene, because it was anthropogenic activities-the damming of a watershed-that created a geologic record that now preserves the very signals that can be used to recognize the Anthropocene worldwide.

8.
Ecology ; 100(10): e02817, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31291688

RESUMO

Variation in life-history strategies can affect metapopulation dynamics and consequently the composition and diversity of communities. However, data sets that allow for the full range of species turnover from colonization to extinction over relevant time periods are limited. The late Quaternary record provides unique opportunities to explore the traits that may have influenced interspecific variation in responses to past climate warming, in particular the rate at which species colonized newly suitable habitat or went locally extinct from degrading habitat. We controlled for differences in species climate niches in order to predict expected colonization and extinction sequences recorded in packrat middens from 15 localities in the Mohave, Sonoran, and Chihuahuan deserts of North America. After accounting for temperature niche differences, we tested the hypotheses that dispersal syndrome (none, wind, vertebrate), growth form (herb, shrub, tree) and seed mass mediated variation in postglacial colonization lags among species, whereas clonality (clonal, non-clonal), growth form, and seed mass affected extinction lags. Growth form and dispersal syndrome interactively affected colonization lags, where herbaceous species lacking long-distance dispersal mechanisms exhibited lags that exceeded those of woody, wind or vertebrate-dispersed species by an average of 2,000-5,000 yr. Growth form and seed mass interactively affected extinction lags, with very small-seeded shrubs persisting for 4,000-8,000 yr longer than other functional groups. Taller, vertebrate-dispersed plants have been shown in other studies to disperse farther than shorter plants without specialized dispersal mechanisms. We found that variation along this axis of dispersal syndromes resulted in dramatic differences in colonization rates in response to past climate change. Very small seeded shrubs may have a unique combination of long vegetative and seed bank lifetimes that may allow them to persist for long periods despite declines in habitat condition. This study indicates that readily measurable traits may help predict which species will be more or less sensitive to future climate change, and inform interventions that can stabilize and promote at-risk populations.


Assuntos
Características de História de Vida , Mudança Climática , Ecossistema , Extinção Biológica , América do Norte , Plantas
9.
Sci Data ; 5: 180024, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29485628

RESUMO

Here we provide the geochemical dataset that our research group has collected after 10 years of investigation in the Sierra Nevada National Park in southern Spain. These data come from Holocene sedimentary records from four alpine sites (ranging from ∼2500 to ∼3000 masl): two peatlands and two shallow lakes. Different kinds of organic and inorganic analyses have been conducted. The organic matter in the bulk sediment was characterised using elemental measurements and isotope-ratio mass spectrometry (EA-IRMS). Leaf waxes in the sediment were investigated by means of chromatography with flame-ionization detection and mass spectrometry (GC-FID, GC-MS). Major, minor and trace elements of the sediments were analysed with atomic absorption (AAS), inductively coupled plasma mass spectrometry (ICP-MS), as well as X-ray scanning fluorescence. These data can be reused by environmental researchers and soil and land managers of the Sierra Nevada National Park and similar regions to identify the effect of natural climate change, overprinted by human impact, as well as to project new management policies in similar protected areas.

10.
12.
Sci Rep ; 7(1): 7439, 2017 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-28785039

RESUMO

Recent studies have proved that high elevation environments, especially remote wetlands, are exceptional ecological sensors of global change. For example, European glaciers have retreated during the 20th century while the Sierra Nevada National Park in southern Spain witnessed the first complete disappearance of modern glaciers in Europe. Given that the effects of climatic fluctuations on local ecosystems are complex in these sensitive alpine areas, it is crucial to identify their long-term natural trends, ecological thresholds, and responses to human impact. In this study, the geochemical records from two adjacent alpine bogs in the protected Sierra Nevada National Park reveal different sensitivities and long-term environmental responses, despite similar natural forcings, such as solar radiation and the North Atlantic Oscillation, during the late Holocene. After the Industrial Revolution both bogs registered an independent, abrupt and enhanced response to the anthropogenic forcing, at the same time that the last glaciers disappeared. The different response recorded at each site suggests that the National Park and land managers of similar regions need to consider landscape and environmental evolution in addition to changing climate to fully understand implications of climate and human influence.

13.
J Miss State Med Assoc ; 52(4): 139-40, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21678860
14.
J Miss State Med Assoc ; 52(10): 335, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22268259
15.
Artigo em Inglês | MEDLINE | ID: mdl-27216524

RESUMO

Recent studies have suggested that the first arrival of humans in the Americas during the end of the last Ice Age is associated with marked anthropogenic influences on landscape; in particular, with the use of fire which, would have given even small populations the ability to have broad impacts on the landscape. Understanding the impact of these early people is complicated by the dramatic changes in climate occurring with the shift from glacial to interglacial conditions. Despite these difficulties, we here attempt to test the extent of anthropogenic influence using the California Channel Islands as a smaller, landscape-scale test bed. These islands are famous for the discovery of the 'Arlington Springs Man', which are some of the earliest human remains in the Americas. A unifying sedimentary charcoal record is presented from Arlington Canyon, Santa Rosa Island, based on over 20 detailed sedimentary sections from eight key localities. Radiocarbon dating was based on thin, fragile, long fragments of charcoal in order to avoid the 'inbuilt' age problem. Radiocarbon dating of 49 such fragments has allowed inferences regarding the fire and landscape history of the Canyon ca 19-11 ka BP. A significant period of charcoal deposition is identified approximately 14-12.5 ka BP and bears remarkable closeness to an estimated age range of the first human arrival on the islands.This article is part of the themed issue 'The interaction of fire and mankind'.


Assuntos
Arqueologia , Ecossistema , Incêndios , Paleontologia , California , Humanos , Ilhas
17.
J Miss State Med Assoc ; 51(11): 341-2, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21365970
18.
J Miss State Med Assoc ; 51(8): 238-9, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21365988
19.
J Miss State Med Assoc ; 51(12): 374-5, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21370611
20.
J Miss State Med Assoc ; 51(1): 31-2, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20827869
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA