Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 32(16): 2611-2622, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37364055

RESUMO

Complex I (CI) deficiency in mitochondrial oxidative phosphorylation (OXPHOS) is the most common cause of mitochondrial diseases, and limited evidence-based treatment options exist. Although CI provides the most electrons to OXPHOS, complex II (CII) is another entry point of electrons. Enhancement of this pathway may compensate for a loss of CI; however, the effects of boosting CII activity on CI deficiency are unclear at the animal level. 5-Aminolevulinic acid (5-ALA) is a crucial precursor of heme, which is essential for CII, complex III, complex IV (CIV) and cytochrome c activities. Here, we show that feeding a combination of 5-ALA hydrochloride and sodium ferrous citrate (5-ALA-HCl + SFC) increases ATP production and suppresses defective phenotypes in Drosophila with CI deficiency. Knockdown of sicily, a Drosophila homolog of the critical CI assembly protein NDUFAF6, caused CI deficiency, accumulation of lactate and pyruvate and detrimental phenotypes such as abnormal neuromuscular junction development, locomotor dysfunctions and premature death. 5-ALA-HCl + SFC feeding increased ATP levels without recovery of CI activity. The activities of CII and CIV were upregulated, and accumulation of lactate and pyruvate was suppressed. 5-ALA-HCl + SFC feeding improved neuromuscular junction development and locomotor functions in sicily-knockdown flies. These results suggest that 5-ALA-HCl + SFC shifts metabolic programs to cope with CI deficiency. Bullet outline 5-Aminolevulinic acid (5-ALA-HCl + SFC) increases ATP production in flies with complex I deficiency.5-ALA-HCl + SFC increases the activities of complexes II and IV.5-ALA-HCl + SFC corrects metabolic abnormalities and suppresses the detrimental phenotypes caused by complex I deficiency.


Assuntos
Doenças Mitocondriais , Dermatopatias , Animais , Ácido Aminolevulínico/farmacologia , Drosophila/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Lactatos , Trifosfato de Adenosina , Piruvatos
2.
Genes Cells ; 29(4): 337-346, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38329182

RESUMO

Accumulation of abnormally phosphorylated tau and its aggregation constitute a significant hallmark of Alzheimer's disease (AD). Tau phosphorylation at Ser262 and Ser356 in the KXGS motifs of microtubule-binding repeats plays a critical role in its physiological function and AD disease progression. Major tau kinases to phosphorylate tau at Ser262 and Ser356 belong to the Microtubule Affinity Regulating Kinase family (MARK1-4), which are considered one of the major contributors to tau abnormalities in AD. However, whether and how each member affects tau toxicity in vivo is unclear. We used transgenic Drosophila as a model to compare the effect on tau-induced neurodegeneration among MARKs in vivo. MARK4 specifically promotes tau accumulation and Ser396 phosphorylation, which yields more tau toxicity than was caused by other MARKs. Interestingly, MARK1, 2, and 4 increased tau phosphorylation at Ser262 and Ser356, but only MARK4 caused tau accumulation, indicating that these sites alone did not cause pathological tau accumulation. Our results revealed MARKs are different in their effect on tau toxicity, and also in tau phosphorylation at pathological sites other than Ser262 and Ser356. Understanding the implementation of each MARK into neurodegenerative disease helps to develop more target and safety therapies to overcome AD and related tauopathies.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Animais , Fosforilação , Drosophila/metabolismo , Proteínas tau/genética , Proteínas tau/toxicidade , Proteínas tau/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Doença de Alzheimer/patologia , Microtúbulos/metabolismo
3.
Neurobiol Dis ; 188: 106334, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37884211

RESUMO

Abnormal activation of microtubule affinity-regulating kinase 4 (MARK4) and its phosphorylation of the microtubule-associated protein tau are believed to play a role in the pathogenesis of Alzheimer's disease, and MARK4 inhibition can be a strategy to develop disease-modifying therapy. Here we report the development of a membrane-permeable peptide that inhibits MARK4 activity in an allosteric manner. The SARS-CoV-2-derived protein Orf9b inhibited MARK4-mediated tau phosphorylation in primary neurons and Drosophila. Orf9b inhibited MARK4 activity in an allosteric manner and did not inhibit the activity of MARK2, which is another MARK family member and is closely related to MARK4. Co-expression of Orf9b in the fly retina expressing human tau and MARK4 suppressed phosphorylation of tau at the microtubule-binding repeats and tau-induced neurodegeneration. We identified the minimal sequence of Orf9b required to suppress MARK4 activity and fused it to a cell-permeable sequence (TAT-Orf9b10-18_78-95). Extracellular supplementation of TAT-Orf9b10-18_78-95 inhibited MARK4 activity in primary neurons, and feeding TAT-Orf9b10-18_78-95 to a fly model of tauopathy lowered phospho-tau levels and suppressed neurodegeneration. These results suggest that TAT-Orf9b10-18_78-95 is a unique class of MARK4 inhibitor and can be used to modify tau toxicity.


Assuntos
COVID-19 , Peptídeos Penetradores de Células , Humanos , Animais , Fosforilação , SARS-CoV-2 , Microtúbulos , Drosophila , Proteínas Serina-Treonina Quinases
4.
Hum Mol Genet ; 30(21): 1955-1967, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34137825

RESUMO

Accumulation of microtubule-associated tau protein is thought to cause neuron loss in a group of neurodegenerative diseases called tauopathies. In diseased brains, tau molecules adopt pathological structures that propagate into insoluble forms with disease-specific patterns. Several types of posttranslational modifications in tau are known to modulate its aggregation propensity in vitro, but their influence on tau accumulation and toxicity at the whole-organism level has not been fully elucidated. Herein, we utilized a series of transgenic Drosophila models to compare systematically the toxicity induced by five tau constructs with mutations or deletions associated with aggregation, including substitutions at seven disease-associated phosphorylation sites (S7A and S7E), deletions of PHF6 and PHF6* sequences (ΔPHF6 and ΔPHF6*), and substitutions of cysteine residues in the microtubule binding repeats (C291/322A). We found that substitutions and deletions resulted in different patterns of neurodegeneration and accumulation, with C291/322A having a dramatic effect on both tau accumulation and neurodegeneration. These cysteines formed disulfide bonds in mouse primary cultured neurons and in the fly retina, and stabilized tau proteins. Additionally, they contributed to tau accumulation under oxidative stress. We also found that each of these cysteine residues contributes to the microtubule polymerization rate and microtubule levels at equilibrium, but none of them affected tau binding to polymerized microtubules. Since tau proteins expressed in the Drosophila retina are mostly present in the early stages of tau filaments self-assembly, our results suggest that disulfide bond formation by these cysteine residues could be attractive therapeutic targets.


Assuntos
Agregação Patológica de Proteínas/metabolismo , Tauopatias/metabolismo , Proteínas tau/metabolismo , Animais , Animais Geneticamente Modificados , Biomarcadores , Modelos Animais de Doenças , Suscetibilidade a Doenças , Drosophila , Microtúbulos/metabolismo , Neurônios/metabolismo , Estresse Oxidativo , Ligação Proteica , Multimerização Proteica , Tauopatias/etiologia , Tauopatias/patologia , Proteínas tau/genética
5.
Respiration ; 102(7): 503-514, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37379810

RESUMO

BACKGROUND: Transbronchial cryobiopsy enables high-quality sample collection around the probe tip. Meanwhile, existing cryoprobes have less flexibility and a higher risk of bleeding. The ultrathin cryoprobe with a 1.1-mm diameter addresses these problems and allows specimens to be directly retrieved through the working channel of a thin bronchoscope. OBJECTIVE: This study evaluated the diagnostic utility and safety of non-intubated cryobiopsy using an ultrathin cryoprobe added to conventional biopsy for diagnosing peripheral pulmonary lesions (PPLs). METHODS: The data of patients who underwent conventional biopsy followed by non-intubated cryobiopsy to retrieve specimens through the thin bronchoscope's working channel for diagnosing PPLs at Osaka Metropolitan University Hospital from July 2021 to June 2022 were retrospectively collected. They were analyzed to evaluate the diagnostic utility and safety of adding non-intubated cryobiopsy to conventional biopsy for PPLs. The characteristics of PPLs that obtain additional diagnostic benefits from cryobiopsy over conventional biopsy were also investigated. RESULTS: The analysis included 113 patients. The diagnostic yields of conventional biopsy and non-intubated cryobiopsy were 70.8% and 82.3%, respectively (p = 0.009). The total diagnostic yield was 85.8%, higher than conventional biopsy alone (p < 0.001). Although one moderate bleeding occurred, no severe complications developed. The additional diagnostic benefits of non-intubated cryobiopsy over conventional biopsy were demonstrated when the radial endobronchial ultrasound (R-EBUS) showed "adjacent to" (60.3% vs. 82.8%, p = 0.017). CONCLUSIONS: Non-intubated cryobiopsy using an ultrathin cryoprobe has high diagnostic utility and safety for diagnosing PPLs, with additional diagnostic benefits over conventional biopsy depending on the R-EBUS image.


Assuntos
Broncoscopia , Neoplasias Pulmonares , Humanos , Broncoscopia/efeitos adversos , Broncoscopia/métodos , Estudos Retrospectivos , Biópsia/efeitos adversos , Biópsia/métodos , Broncoscópios/efeitos adversos , Endossonografia/métodos , Hemorragia/etiologia , Neoplasias Pulmonares/patologia
6.
Neurochem Res ; 47(9): 2773-2779, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35674931

RESUMO

Valproic acid (VPA) is a drug used for the treatment of epilepsy, seizures, migraines, and bipolar disorders. Cyclin-dependent kinase 5 (Cdk5) is a Ser/Thr kinase activated by p35 or p39 in neurons and plays a role in a variety of neuronal functions, including psychiatric behaviors. We previously reported that VPA suppressed Cdk5 activity by reducing the expression of p35 in cultured cortical neurons, leaving p39 unchanged. In this study, we asked for the role of Cdk5 in VPA-induced anxiety and depression behaviors. Wild-type (WT) mice displayed increased anxiety and depression after chronic administration of VPA for 14 days, when the expression of p35 was decreased. To clarify their relationship, we used p39 knockout (KO) mice, in which p35 is the only Cdk5 activator. When p39 KO mice were treated chronically with VPA, unexpectedly, they exhibited fewer anxiety and depression behaviors than WT mice. The effects were p39 cdk5r2 gene-dosage dependent. Together, these results indicate that Cdk5-p39 plays a specific role in VPA-induced anxiety and depression behaviors.


Assuntos
Anticonvulsivantes , Antimaníacos , Ansiedade , Proteínas do Citoesqueleto , Depressão , Proteínas Ligadas a Lipídeos , Ácido Valproico , Animais , Anticonvulsivantes/efeitos adversos , Anticonvulsivantes/uso terapêutico , Antimaníacos/efeitos adversos , Antimaníacos/uso terapêutico , Ansiedade/induzido quimicamente , Ansiedade/genética , Proteínas do Citoesqueleto/genética , Depressão/induzido quimicamente , Depressão/genética , Proteínas Ligadas a Lipídeos/genética , Camundongos , Camundongos Knockout , Ácido Valproico/efeitos adversos , Ácido Valproico/uso terapêutico
7.
J Biol Chem ; 295(50): 17138-17147, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33020179

RESUMO

Accumulation of the microtubule-associated protein tau is associated with Alzheimer's disease (AD). In AD brain, tau is abnormally phosphorylated at many sites, and phosphorylation at Ser-262 and Ser-356 plays critical roles in tau accumulation and toxicity. Microtubule affinity-regulating kinase 4 (MARK4) phosphorylates tau at those sites, and a double de novo mutation in the linker region of MARK4, ΔG316E317D, is associated with an elevated risk of AD. However, it remains unclear how this mutation affects phosphorylation, aggregation, and accumulation of tau and tau-induced neurodegeneration. Here, we report that MARK4ΔG316E317D increases the abundance of highly phosphorylated, insoluble tau species and exacerbates neurodegeneration via Ser-262/356-dependent and -independent mechanisms. Using transgenic Drosophila expressing human MARK4 (MARK4wt) or a mutant version of MARK4 (MARK4ΔG316E317D), we found that coexpression of MARK4wt and MARK4ΔG316E317D increased total tau levels and enhanced tau-induced neurodegeneration and that MARK4ΔG316E317D had more potent effects than MARK4wt Interestingly, the in vitro kinase activities of MARK4wt and MARK4ΔG316E317D were similar. When tau phosphorylation at Ser-262 and Ser-356 was blocked by alanine substitutions, MARK4wt did not promote tau accumulation or exacerbate neurodegeneration, whereas coexpression of MARK4ΔG316E317D did. Both MARK4wt and MARK4ΔG316E317D increased the levels of oligomeric forms of tau; however, only MARK4ΔG316E317D further increased the detergent insolubility of tau in vivo Together, these findings suggest that MARK4ΔG316E317D increases tau levels and exacerbates tau toxicity via a novel gain-of-function mechanism and that modification in this region of MARK4 may affect disease pathogenesis.


Assuntos
Doença de Alzheimer/metabolismo , Proteínas de Drosophila/metabolismo , Mutação com Ganho de Função , Multimerização Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/genética , Animais , Animais Geneticamente Modificados , Proteínas de Drosophila/genética , Drosophila melanogaster , Células HEK293 , Humanos , Proteínas Serina-Treonina Quinases/genética , Proteínas tau/genética
8.
Hum Mol Genet ; 28(18): 3062-3071, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31174206

RESUMO

Hyperphosphorylation of the microtubule-associated protein tau is associated with many neurodegenerative diseases, including Alzheimer's disease. Microtubule affinity-regulating kinases (MARK) 1-4 and cyclin-dependent kinase 5 (Cdk5) are tau kinases under physiological and pathological conditions. However, their functional relationship remains elusive. Here, we report a novel mechanism by which Cdk5 activates MARK4 and augments tau phosphorylation, accumulation and toxicity. MARK4 is highly phosphorylated at multiple sites in the brain and in cultured neurons, and inhibition of Cdk5 activity reduces phosphorylation levels of MARK4. MARK4 is known to be activated by phosphorylation at its activation loop by liver kinase B1 (LKB1). In contrast, Cdk5 increased phosphorylation of MARK4 in the spacer domain, but not in the activation loop, and enhanced its kinase activity, suggesting a novel mechanism by which Cdk5 regulates MARK4 activity. We also demonstrated that co-expression of Cdk5 and MARK4 in mammalian cultured cells significantly increased the levels of tau phosphorylation at both Cdk5 target sites (SP/TP sites) and MARK target sites (Ser262), as well as the levels of total tau. Furthermore, using a Drosophila model of tau toxicity, we demonstrated that Cdk5 promoted tau accumulation and tau-induced neurodegeneration via increasing tau phosphorylation levels at Ser262 by a fly ortholog of MARK, Par-1. This study suggests a novel mechanism by which Cdk5 and MARK4 synergistically increase tau phosphorylation and accumulation, consequently promoting neurodegeneration in disease pathogenesis.


Assuntos
Quinase 5 Dependente de Ciclina/metabolismo , Agregação Patológica de Proteínas , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Axônios/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Drosophila , Expressão Gênica , Humanos , Modelos Biológicos , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neurônios/metabolismo , Fosforilação , Agregados Proteicos , Ligação Proteica
9.
J Neurosci ; 39(48): 9491-9502, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31628178

RESUMO

Dendritic spines are postsynaptic protrusions at excitatory synapses that are critical for proper neuronal synaptic transmission. While lipid and protein membrane components are necessary for spine formation, it is largely unknown how they are recruited to developing spines. Endosomal trafficking is one mechanism that may influence this development. We recently reported that Lemur kinase 1A (LMTK1A), a membrane-bound Ser/Thr kinase, regulates trafficking of endosomes in neurons. LMTK1 has been shown to be a p35 Cdk5 activator-binding protein and a substrate for Cdk5-p35; however, its neuronal function has not been sufficiently studied. Here, we investigate the role of LMTK1 in spine formation. Depletion of LMTK1 increases spine formation, maturation, and density in primary cultured neurons and in mouse brain of either sex. Additionally, expression of kinase-negative LMTK1 stimulates spine formation in primary neurons and in vivo LMTK1 controls spine formation through Rab11, a regulator of recycling endosome trafficking. We identify TBC1D9B, a Rab11A GTPase-activating protein (Rab11A GAP), as a LMTK1 binding protein, and find that TBC1D9B mediates LMTK1 activity on Rab11A. TBC1D9B inactivates Rab11A under the control of LMTK1A. Further, by analyzing the effect of decreased TBC1D9B expression in primary neurons, we demonstrate that TBC1D9B indeed regulates spine formation. This is the first demonstration of the biological function of TBC1D9B. Together, with the regulation of LMTK1 by Cdk5-p35, we propose the Cdk5-LMTK1-TBC1D9B-Rab11A cascade as a novel signaling mechanism regulating endosomal transport for synapse formation and function.SIGNIFICANCE STATEMENT Dendritic spines are postsynaptic specializations essential for synaptic transmission. However, it is not known how critical membrane components are recruited to spines for their formation. Endosomal trafficking is one such mechanism that may mediate this process. Here we investigate regulators of endosomal trafficking and their contribution to spine formation. We identify two novel factors, LMTK1 and TBC1D9B, which regulate spine formation upstream of Rab11A, a small GTPase. LMTK1 is a membrane bound Ser/Thr kinase regulated by Cdk5-p35, and TBC1D9B is a recently identified Rab11 GAP. LMTK1 controls the GAP activity of TBC1D9B on Rab11A, and TBC1D9B mediates the LMTK1 activity on Rab11A. We propose the Cdk5-LMTK1-TBC1D9B-Rab11A cascade as a novel mechanism controlling spine formation and function.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Espinhas Dendríticas/metabolismo , Endossomos/metabolismo , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais/fisiologia , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Células COS , Chlorocebus aethiops , Espinhas Dendríticas/genética , Endossomos/genética , Feminino , Células HEK293 , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , Gravidez , Transporte Proteico/fisiologia , Proteínas Tirosina Quinases/genética , Proteínas rab de Ligação ao GTP/genética
10.
J Biol Chem ; 294(30): 11433-11444, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31171723

RESUMO

Tau is a microtubule-associated protein expressed in neuronal axons. Hyperphosphorylated tau is a major component of neurofibrillary tangles, a pathological hallmark of Alzheimer's disease (AD). Hyperphosphorylated tau aggregates are also found in many neurodegenerative diseases, collectively referred to as "tauopathies," and tau mutations are associated with familial frontotemporal lobar degeneration (FTLD). Previous studies have generated transgenic mice with mutant tau as tauopathy models, but nonhuman primates, which are more similar to humans, may be a better model to study tauopathies. For example, the common marmoset is poised as a nonhuman primate model for investigating the etiology of age-related neurodegenerative diseases. However, no biochemical studies of tau have been conducted in marmoset brains. Here, we investigated several important aspects of tau, including expression of different tau isoforms and its phosphorylation status, in the marmoset brain. We found that marmoset tau does not possess the "primate-unique motif" in its N-terminal domain. We also discovered that the tau isoform expression pattern in marmosets is more similar to that of mice than that of humans, with adult marmoset brains expressing only four-repeat tau isoforms as in adult mice but unlike in adult human brains. Of note, tau in brains of marmoset newborns was phosphorylated at several sites associated with AD pathology. However, in adult marmoset brains, much of this phosphorylation was lost, except for Ser-202 and Ser-404 phosphorylation. These results reveal key features of tau expression and phosphorylation in the marmoset brain, a potentially useful nonhuman primate model of neurodegenerative diseases.


Assuntos
Encéfalo/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Animais , Callithrix , Células Cultivadas , DNA Complementar/genética , Humanos , Camundongos , Camundongos Transgênicos , Fosforilação , Filogenia , Isoformas de Proteínas/genética , Proteínas tau/genética
11.
J Biol Chem ; 293(5): 1781-1793, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29196605

RESUMO

Tau is a microtubule (MT)-associated protein that regulates MT dynamics in the axons of neurons. Tau binds to MTs via its C-terminal MT-binding repeats. There are two types of tau, those with three (3R) or four (4R) MT-binding repeats; 4R tau has a stronger MT-stabilizing activity than 3R tau. The MT-stabilizing activity of tau is regulated by phosphorylation. Interestingly, both the isoform and phosphorylation change at the time of neuronal circuit formation during postnatal development; highly phosphorylated 3R tau is replaced with 4R tau, which is less phosphorylated. However, it is not known how the transition of the isoforms and phosphorylation are regulated. Here, we addressed this question using developing mouse brains. Detailed analysis of developing brains revealed that the switch from 3R to 4R tau occurred during postnatal day 9 (P9) to P18 under the same time course as the conversion of phosphorylation from high to low. However, hypothyroidism, which is known to delay brain development, delayed the timing of tau dephosphorylation but not the exchange of isoforms, indicating that isoform switching and phosphorylation are not necessarily linked. Furthermore, we confirmed this finding by using mouse brains that expressed a single isoform of human tau. Human tau, either 3R or 4R, reduced phosphorylation levels during development even though the isoform did not change. We also found that 3R tau and 4R tau were phosphorylated differently in vivo even at the same developmental days. These results show for the first time that the phosphorylation and isoform alteration of tau are regulated differently during mouse development.


Assuntos
Envelhecimento/metabolismo , Encéfalo/crescimento & desenvolvimento , Proteínas tau/metabolismo , Envelhecimento/genética , Envelhecimento/patologia , Animais , Encéfalo/patologia , Hipotireoidismo/genética , Hipotireoidismo/metabolismo , Hipotireoidismo/patologia , Camundongos , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Fosforilação/genética , Proteínas tau/genética
12.
Biochem Biophys Res Commun ; 510(3): 370-375, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30712943

RESUMO

Serotonin (5-HT) is a major neurotransmitter in mammalian brains and is involved in brain development and psychiatric disorders. The 5-HT1A receptor (5-HT1AR) is a G-protein-coupled receptor (GPCR) associated with an inhibitory G-protein (Gi) with the widest and most abundant expression. It is not known; however, how expression or activity of 5-HTlAR is regulated. We studied here phosphorylation of 5-HT1AR by cyclin-dependent kinase 5 (Cdk5), a neuron-specific membrane-bound Ser/Thr kinase that is activated by binding of the p35 Cdk5 activator. 5-HT1AR was phosphorylated by the Cdk5-p35 complex at Thr314 in the third cytoplasmic loop. The phosphorylation stimulated the degradation of 5-HT1AR by the proteasome, resulting in neutralization of the inhibitory action of 5-HT1AR on intracellular cAMP concentration. These results suggest that Cdk5-p35 modulates 5-HT signaling through phosphorylation-dependent degradation of 5-HTlAR.


Assuntos
Quinase 5 Dependente de Ciclina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Animais , Células CHO , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Cricetulus , Regulação para Baixo , Células HEK293 , Humanos , Proteínas do Tecido Nervoso/metabolismo , Fosforilação , Serotonina/farmacologia , Transdução de Sinais
13.
PLoS Genet ; 12(3): e1005917, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27023670

RESUMO

Abnormal accumulation of the microtubule-interacting protein tau is associated with neurodegenerative diseases including Alzheimer's disease (AD). ß-amyloid (Aß) lies upstream of abnormal tau behavior, including detachment from microtubules, phosphorylation at several disease-specific sites, and self-aggregation into toxic tau species in AD brains. To prevent the cascade of events leading to neurodegeneration in AD, it is essential to elucidate the mechanisms underlying the initial events of tau mismetabolism. Currently, however, these mechanisms remain unclear. In this study, using transgenic Drosophila co-expressing human tau and Aß, we found that tau phosphorylation at AD-related Ser262/356 stabilized microtubule-unbound tau in the early phase of tau mismetabolism, leading to neurodegeneration. Aß increased the level of tau detached from microtubules, independent of the phosphorylation status at GSK3-targeted SP/TP sites. Such mislocalized tau proteins, especially the less phosphorylated species, were stabilized by phosphorylation at Ser262/356 via PAR-1/MARK. Levels of Ser262 phosphorylation were increased by Aß42, and blocking this stabilization of tau suppressed Aß42-mediated augmentation of tau toxicity and an increase in the levels of tau phosphorylation at the SP/TP site Thr231, suggesting that this process may be involved in AD pathogenesis. In contrast to PAR-1/MARK, blocking tau phosphorylation at SP/TP sites by knockdown of Sgg/GSK3 did not reduce tau levels, suppress tau mislocalization to the cytosol, or diminish Aß-mediated augmentation of tau toxicity. These results suggest that stabilization of microtubule-unbound tau by phosphorylation at Ser262/356 via the PAR-1/MARK may act in the initial steps of tau mismetabolism in AD pathogenesis, and that such tau species may represent a potential therapeutic target for AD.


Assuntos
Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Quinase 3 da Glicogênio Sintase/genética , Receptor PAR-1/genética , Proteínas tau/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Drosophila/genética , Drosophila/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Microtúbulos/metabolismo , Microtúbulos/patologia , Neurônios/metabolismo , Neurônios/patologia , Fosforilação , Receptor PAR-1/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Proteínas tau/metabolismo
14.
Genes Cells ; 21(10): 1080-1094, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27600567

RESUMO

Neurite formation, a fundamental process in neuronal maturation, requires the coordinated regulation of cytoskeletal reorganization and membrane transport. Compared to the understanding of cytoskeletal functions, less is known about the supply of membranes to growing neurites. Lemur kinase 1A (LMTK1A) is an endosomal protein kinase that is highly expressed in neurons. We recently reported that LMTK1A regulates the trafficking of Rab11-positive recycling endosomes in growing axons and dendrites. Here, we used the kinase-negative (kn) mutant to investigate the role of the kinase activity of LMTK1A in its cellular localization and interactions with the cytoskeleton in Neuro2A and PC-12 cells. Kinase activity was required for the localization of LMTK1A in the perinuclear endocytic recycling compartment. Perinuclear accumulation was microtubule dependent, and LMTK1A wild type (wt) localized mainly on microtubules, whereas kn LMTK1A was found in the actin-rich cell periphery. In the neurites of PC-12 cells, LMTK1A showed contrasting distributions depending on the kinase activity, with wt being located in the microtubule-rich shaft and the kn form in the actin-rich tip. Taken together, these results suggest that the kinase activity of LMTK1A regulates the pathway for endosomal vesicles to transfer from microtubules to actin filaments at the tip of growing neurites.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Citoesqueleto/metabolismo , Endossomos/enzimologia , Neuritos/metabolismo , Proteínas Tirosina Quinases/metabolismo , Animais , Linhagem Celular , Camundongos , Microtúbulos/metabolismo , Crescimento Neuronal , Células PC12 , Ratos , Tubulina (Proteína)/metabolismo
15.
Biochem Biophys Res Commun ; 478(2): 929-34, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27520376

RESUMO

Abnormal phosphorylation of the microtubule-associated protein tau is observed in many neurodegenerative diseases, including Alzheimer's disease (AD). AD-related phosphorylation of two tau residues, Ser262 and Ser356, by PAR-1/MARK stabilizes tau in the initial phase of mismetabolism, leading to subsequent phosphorylation events, accumulation, and toxicity. However, the relative contribution of phosphorylation at each of these sites to tau stabilization has not yet been elucidated. In a Drosophila model of human tau toxicity, we found that tau was phosphorylated at Ser262, but not at Ser356, and that blocking Ser262 phosphorylation decreased total tau levels. By contrast, when PAR-1 was co-overexpressed with tau, tau was hyperphosphorylated at both Ser262 and Ser356. Under these conditions, the protein levels of tau were significantly elevated, and prevention of tau phosphorylation at both residues was necessary to completely suppress this elevation. These results suggest that tau phosphorylation at Ser262 plays the predominant role in tau stabilization when PAR-1/MARK activity is normal, whereas Ser356 phosphorylation begins to contribute to this process when PAR-1/MARK activity is abnormally elevated, as in diseased brains.


Assuntos
Doença de Alzheimer/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Fosfosserina/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/patologia , Substituição de Aminoácidos , Animais , Modelos Animais de Doenças , Humanos , Fosforilação , Estabilidade Proteica
16.
PLoS Genet ; 8(8): e1002918, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22952452

RESUMO

Abnormal phosphorylation and toxicity of a microtubule-associated protein tau are involved in the pathogenesis of Alzheimer's disease (AD); however, what pathological conditions trigger tau abnormality in AD is not fully understood. A reduction in the number of mitochondria in the axon has been implicated in AD. In this study, we investigated whether and how loss of axonal mitochondria promotes tau phosphorylation and toxicity in vivo. Using transgenic Drosophila expressing human tau, we found that RNAi-mediated knockdown of milton or Miro, an adaptor protein essential for axonal transport of mitochondria, enhanced human tau-induced neurodegeneration. Tau phosphorylation at an AD-related site Ser262 increased with knockdown of milton or Miro; and partitioning defective-1 (PAR-1), the Drosophila homolog of mammalian microtubule affinity-regulating kinase, mediated this increase of tau phosphorylation. Tau phosphorylation at Ser262 has been reported to promote tau detachment from microtubules, and we found that the levels of microtubule-unbound free tau increased by milton knockdown. Blocking tau phosphorylation at Ser262 site by PAR-1 knockdown or by mutating the Ser262 site to unphosphorylatable alanine suppressed the enhancement of tau-induced neurodegeneration caused by milton knockdown. Furthermore, knockdown of milton or Miro increased the levels of active PAR-1. These results suggest that an increase in tau phosphorylation at Ser262 through PAR-1 contributes to tau-mediated neurodegeneration under a pathological condition in which axonal mitochondria is depleted. Intriguingly, we found that knockdown of milton or Miro alone caused late-onset neurodegeneration in the fly brain, and this neurodegeneration could be suppressed by knockdown of Drosophila tau or PAR-1. Our results suggest that loss of axonal mitochondria may play an important role in tau phosphorylation and toxicity in the pathogenesis of AD.


Assuntos
Doença de Alzheimer , Proteínas de Drosophila , Drosophila , Quinase 3 da Glicogênio Sintase , Proteínas rho de Ligação ao GTP , Proteínas tau , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Animais Geneticamente Modificados , Axônios/metabolismo , Axônios/patologia , Drosophila/genética , Drosophila/metabolismo , Drosophila/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Técnicas de Silenciamento de Genes , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Fosforilação , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
17.
FEBS Lett ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969617

RESUMO

Microtubule affinity-regulating kinase 2 (MARK2) is a Ser/Thr protein kinase that regulates cell polarity and immune responses. Here, we report that Orf9b, one of the accessory proteins encoded in the SARS-CoV-2 genome, increases MARK2 activity via interaction with the autoinhibitory KAI domain. We found that co-expression of Orf9b enhances the kinase activity of MARK2 in HEK293 cells. Orf9b does not bind to or enhance the activity of the mutant form of MARK2 lacking the KA1 domain. Orf9b lowers inhibitory phosphorylation of MARK2 at T595 while mutation experiments indicate that this site is dispensable for Orf9b-mediated enhancement of MARK2 activity. Our results suggest that Orf9b enhances MARK2 activity by binding the autoinhibitory KA1 domain, which closely interacts with the kinase domain.

18.
bioRxiv ; 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38293064

RESUMO

Neuronal aging and neurodegenerative diseases are accompanied by proteostasis collapse, while cellular factors that trigger it are not identified. Impaired mitochondrial transport in the axon is another feature of aging and neurodegenerative diseases. Using Drosophila, we found that genetic depletion of axonal mitochondria causes dysregulation of translation and protein degradation. Axons with mitochondrial depletion showed abnormal protein accumulation, and autophagic defects. Lowering neuronal ATP levels by blocking glycolysis did not reduce autophagy, suggesting that autophagic defects are associated with mitochondrial distribution. We found eIF2ß was upregulated by depletion of axonal mitochondria via proteome analysis. Phosphorylation of eIF2α, another subunit of eIF2, was lowered, and global translation was suppressed. Neuronal overexpression of eIF2ß phenocopied the autophagic defects and neuronal dysfunctions, and lowering eIF2ß expression rescued those perturbations caused by depletion of axonal mitochondria. These results indicate the mitochondria-eIF2ß axis maintains proteostasis in the axon, of which disruption may underly the onset and progression of age-related neurodegenerative diseases.

19.
bioRxiv ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39229232

RESUMO

Brain inflammation contributes to the pathogenesis of neurodegenerative diseases such as Alzheimer's disease (AD). Glucose hypometabolism and glial activation are pathological features seen in AD brains; however, the connection between the two is not fully understood. Using a Drosophila model of AD, we identified that glucose metabolism in glia plays a critical role in neuroinflammation under disease conditions. Expression of human tau in the retinal cells, including photoreceptor neurons and pigment glia, causes photoreceptor degeneration accompanied by inclusion formation and swelling of lamina glial cells. We found that inclusions are formed by glial phagocytosis, and swelling of the laminal cortex correlates with the expression of antimicrobial peptides (AMPs). Co-expression of human glucose transporter 3 ( GLUT3 ) with tau in the retina does not affect tau levels but suppresses these inflammatory responses and photoreceptor degeneration. We also found that expression of GLUT3 , specifically in the pigment glia, is sufficient to suppress inflammatory phenotypes and mitigate photoreceptor degeneration in the tau-expressing retina. Our results suggest that glial glucose metabolism contributes to inflammatory responses and neurodegeneration in tauopathy. Highlights: Tau expression in the fly retina induces glial activationPigment glial cells mediate inflammatory phenotypes in the degenerating retinaEnhanced glucose uptake in the pigment glia suppresses inflammation and photoreceptor neurodegeneration caused by tau expression.

20.
Sci Rep ; 14(1): 18471, 2024 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-39122814

RESUMO

Generation and accumulation of amyloid-ß (Aß) protein in the brain are the primary causes of Alzheimer's disease (AD). Alcadeins (Alcs composed of Alcα, Alcß and Alcγ family) are a neuronal membrane protein that is subject to proteolytic processing, as is Aß protein precursor (APP), by APP secretases. Previous observations suggest that Alcs are involved in the pathophysiology of Alzheimer's disease (AD). Here, we generated new mouse AppNL-F (APP-KI) lines with either Alcα- or Alcß-deficient background and analyzed APP processing and Aß accumulation through the aging process. The Alcα-deficient APP-KI (APP-KI/Alcα-KO) mice enhanced brain Aß accumulation along with increased amyloidogenic ß-site cleavage of APP through the aging process whereas Alcß-deficient APP-KI (APP-KI/Alcß-KO) mice neither affected APP metabolism nor Aß accumulation at any age. More colocalization of APP and BACE1 was observed in the endolysosomal pathway in neurons of APP-KI/Alcα-KO mice compared to APP-KI and APP-KI/Alcß-KO mice. These results indicate that Alcα plays an important role in the neuroprotective function by suppressing the amyloidogenic cleavage of APP by BACE1 in the brain, which is distinct from the neuroprotective function of Alcß, in which p3-Alcß peptides derived from Alcß restores the viability in neurons impaired by toxic Aß.


Assuntos
Envelhecimento , Secretases da Proteína Precursora do Amiloide , Peptídeos beta-Amiloides , Precursor de Proteína beta-Amiloide , Encéfalo , Animais , Camundongos , Envelhecimento/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Ácido Aspártico Endopeptidases/genética , Encéfalo/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA