Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 18(8): e1010337, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36007015

RESUMO

Central and eastern chimpanzees are infected with Simian Immunodeficiency Virus (SIV) in the wild, typically without developing acute immunodeficiency. Yet the recent zoonotic transmission of chimpanzee SIV to humans, which were naïve to the virus, gave rise to the Human Immunodeficiency Virus (HIV), which causes AIDS and is responsible for one of the deadliest pandemics in human history. Chimpanzees have likely been infected with SIV for tens of thousands of years and have likely evolved to reduce its pathogenicity, becoming semi-natural hosts that largely tolerate the virus. In support of this view, central and eastern chimpanzees show evidence of positive selection in genes involved in SIV/HIV cell entry and immune response to SIV, respectively. We hypothesise that the population first infected by SIV would have experienced the strongest selective pressure to control the lethal potential of zoonotic SIV, and that population genetics will reveal those first critical adaptations. With that aim we used population genetics to investigate signatures of positive selection in the common ancestor of central-eastern chimpanzees. The genes with signatures of positive selection in the ancestral population are significantly enriched in SIV-related genes, especially those involved in the immune response to SIV and those encoding for host genes that physically interact with SIV/HIV (VIPs). This supports a scenario where SIV first infected the central-eastern ancestor and where this population was under strong pressure to adapt to zoonotic SIV. Interestingly, integrating these genes with candidates of positive selection in the two infected subspecies reveals novel patterns of adaptation to SIV. Specifically, we observe evidence of positive selection in numerous steps of the biological pathway responsible for T-helper cell differentiation, including CD4 and multiple genes that SIV/HIV use to infect and control host cells. This pathway is active only in CD4+ cells which SIV/HIV infects, and it plays a crucial role in shaping the immune response so it can efficiently control the virus. Our results confirm the importance of SIV as a selective factor, identify specific genetic changes that may have allowed our closest living relatives to reduce SIV's pathogenicity, and demonstrate the potential of population genomics to reveal the evolutionary mechanisms used by naïve hosts to reduce the pathogenicity of zoonotic pathogens.


Assuntos
Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , HIV/genética , Humanos , Pan troglodytes/genética , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Vírus da Imunodeficiência Símia/genética
2.
Trends Genet ; 36(6): 415-428, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32396835

RESUMO

Modern humans inhabit a variety of environments and are exposed to a plethora of selective pressures, leading to multiple genetic adaptations to local environmental conditions. These include adaptations to climate, UV exposure, disease, diet, altitude, or cultural practice and have generated important genetic and phenotypic differences amongst populations. In recent years, new methods to identify the genomic signatures of natural selection underlying these adaptations, combined with novel types of genetic data (e.g., ancient DNA), have provided unprecedented insights into the origin of adaptive alleles and the modes of adaptation. As a result, numerous instances of local adaptation have been identified in humans. Here, we review the most exciting recent developments and discuss, in our view, the future of this field.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Variação Genética , Genômica/métodos , Seleção Genética , Animais , Humanos
3.
Nature ; 530(7591): 429-33, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26886800

RESUMO

It has been shown that Neanderthals contributed genetically to modern humans outside Africa 47,000-65,000 years ago. Here we analyse the genomes of a Neanderthal and a Denisovan from the Altai Mountains in Siberia together with the sequences of chromosome 21 of two Neanderthals from Spain and Croatia. We find that a population that diverged early from other modern humans in Africa contributed genetically to the ancestors of Neanderthals from the Altai Mountains roughly 100,000 years ago. By contrast, we do not detect such a genetic contribution in the Denisovan or the two European Neanderthals. We conclude that in addition to later interbreeding events, the ancestors of Neanderthals from the Altai Mountains and early modern humans met and interbred, possibly in the Near East, many thousands of years earlier than previously thought.


Assuntos
Fluxo Gênico/genética , Homem de Neandertal/genética , Altitude , Animais , Teorema de Bayes , Cromossomos Humanos Par 21/genética , Croácia/etnologia , Genoma Humano/genética , Genômica , Haplótipos/genética , Heterozigoto , Humanos , Hibridização Genética/genética , Filogenia , Densidade Demográfica , Sibéria , Espanha/etnologia , Fatores de Tempo
4.
PLoS Genet ; 15(11): e1008485, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31765391

RESUMO

Chimpanzees, humans' closest relatives, are in danger of extinction. Aside from direct human impacts such as hunting and habitat destruction, a key threat is transmissible disease. As humans continue to encroach upon their habitats, which shrink in size and grow in density, the risk of inter-population and cross-species viral transmission increases, a point dramatically made in the reverse with the global HIV/AIDS pandemic. Inhabiting central Africa, the four subspecies of chimpanzees differ in demographic history and geographical range, and are likely differentially adapted to their particular local environments. To quantitatively explore genetic adaptation, we investigated the genic enrichment for SNPs highly differentiated between chimpanzee subspecies. Previous analyses of such patterns in human populations exhibited limited evidence of adaptation. In contrast, chimpanzees show evidence of recent positive selection, with differences among subspecies. Specifically, we observe strong evidence of recent selection in eastern chimpanzees, with highly differentiated SNPs being uniquely enriched in genic sites in a way that is expected under recent adaptation but not under neutral evolution or background selection. These sites are enriched for genes involved in immune responses to pathogens, and for genes inferred to differentiate the immune response to infection by simian immunodeficiency virus (SIV) in natural vs. non-natural host species. Conversely, central chimpanzees exhibit an enrichment of signatures of positive selection only at cytokine receptors, due to selective sweeps in CCR3, CCR9 and CXCR6 -paralogs of CCR5 and CXCR4, the two major receptors utilized by HIV to enter human cells. Thus, our results suggest that positive selection has contributed to the genetic and phenotypic differentiation of chimpanzee subspecies, and that viruses likely play a predominate role in this differentiation, with SIV being a likely selective agent. Interestingly, our results suggest that SIV has elicited distinctive adaptive responses in these two chimpanzee subspecies.


Assuntos
Adaptação Fisiológica/genética , Imunidade Inata/genética , Pan troglodytes/genética , Seleção Genética/genética , Adaptação Fisiológica/imunologia , Animais , Demografia , Deriva Genética , Especiação Genética , HIV/genética , HIV/imunologia , HIV/patogenicidade , Humanos , Pan troglodytes/imunologia , Pan troglodytes/virologia , Polimorfismo de Nucleotídeo Único/genética , Receptores CCR/genética , Receptores CCR3/genética , Receptores CCR5/genética , Receptores CXCR4/genética , Receptores CXCR6/imunologia , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/imunologia , Vírus da Imunodeficiência Símia/patogenicidade
5.
PLoS Genet ; 14(5): e1007298, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29723195

RESUMO

Ambient temperature is a critical environmental factor for all living organisms. It was likely an important selective force as modern humans recently colonized temperate and cold Eurasian environments. Nevertheless, as of yet we have limited evidence of local adaptation to ambient temperature in populations from those environments. To shed light on this question, we exploit the fact that humans are a cosmopolitan species that inhabit territories under a wide range of temperatures. Focusing on cold perception-which is central to thermoregulation and survival in cold environments-we show evidence of recent local adaptation on TRPM8. This gene encodes for a cation channel that is, to date, the only temperature receptor known to mediate an endogenous response to moderate cold. The upstream variant rs10166942 shows extreme population differentiation, with frequencies that range from 5% in Nigeria to 88% in Finland (placing this SNP in the 0.02% tail of the FST empirical distribution). When all populations are jointly analyzed, allele frequencies correlate with latitude and temperature beyond what can be explained by shared ancestry and population substructure. Using a Bayesian approach, we infer that the allele originated and evolved neutrally in Africa, while positive selection raised its frequency to different degrees in Eurasian populations, resulting in allele frequencies that follow a latitudinal cline. We infer strong positive selection, in agreement with ancient DNA showing high frequency of the allele in Europe 3,000 to 8,000 years ago. rs10166942 is important phenotypically because its ancestral allele is protective of migraine. This debilitating disorder varies in prevalence across human populations, with highest prevalence in individuals of European descent-precisely the population with the highest frequency of rs10166942 derived allele. We thus hypothesize that local adaptation on previously neutral standing variation may have contributed to the genetic differences that exist in the prevalence of migraine among human populations today.


Assuntos
Adaptação Fisiológica/genética , Temperatura Baixa , Polimorfismo de Nucleotídeo Único , Canais de Cátion TRPM/genética , África , Ásia , Teorema de Bayes , Europa (Continente) , Perfilação da Expressão Gênica , Frequência do Gene , Genética Populacional/estatística & dados numéricos , Genótipo , Humanos , Desequilíbrio de Ligação , Seleção Genética
6.
Am J Hum Genet ; 98(2): 399, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-31265485

RESUMO

[This corrects the article DOI: 10.1016/j.ajhg.2015.11.015.].

7.
Am J Hum Genet ; 98(1): 22-33, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26748514

RESUMO

Pathogens and the diseases they cause have been among the most important selective forces experienced by humans during their evolutionary history. Although adaptive alleles generally arise by mutation, introgression can also be a valuable source of beneficial alleles. Archaic humans, who lived in Europe and Western Asia for more than 200,000 years, were probably well adapted to this environment and its local pathogens. It is therefore conceivable that modern humans entering Europe and Western Asia who admixed with them obtained a substantial immune advantage from the introgression of archaic alleles. Here we document a cluster of three Toll-like receptors (TLR6-TLR1-TLR10) in modern humans that carries three distinct archaic haplotypes, indicating repeated introgression from archaic humans. Two of these haplotypes are most similar to the Neandertal genome, and the third haplotype is most similar to the Denisovan genome. The Toll-like receptors are key components of innate immunity and provide an important first line of immune defense against bacteria, fungi, and parasites. The unusually high allele frequencies and unexpected levels of population differentiation indicate that there has been local positive selection on multiple haplotypes at this locus. We show that the introgressed alleles have clear functional effects in modern humans; archaic-like alleles underlie differences in the expression of the TLR genes and are associated with increased [corrected] microbial resistance and increased allergic disease in large cohorts. This provides strong evidence for recurrent adaptive introgression at the TLR6-TLR1-TLR10 locus, resulting in differences in disease phenotypes in modern humans.


Assuntos
Adaptação Fisiológica/genética , Haplótipos , Homem de Neandertal/genética , Receptores Toll-Like/genética , Animais , Linhagem Celular , Humanos , Polimorfismo de Nucleotídeo Único
8.
Nature ; 486(7404): 527-31, 2012 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-22722832

RESUMO

Two African apes are the closest living relatives of humans: the chimpanzee (Pan troglodytes) and the bonobo (Pan paniscus). Although they are similar in many respects, bonobos and chimpanzees differ strikingly in key social and sexual behaviours, and for some of these traits they show more similarity with humans than with each other. Here we report the sequencing and assembly of the bonobo genome to study its evolutionary relationship with the chimpanzee and human genomes. We find that more than three per cent of the human genome is more closely related to either the bonobo or the chimpanzee genome than these are to each other. These regions allow various aspects of the ancestry of the two ape species to be reconstructed. In addition, many of the regions that overlap genes may eventually help us understand the genetic basis of phenotypes that humans share with one of the two apes to the exclusion of the other.


Assuntos
Evolução Molecular , Variação Genética/genética , Genoma Humano/genética , Genoma/genética , Pan paniscus/genética , Pan troglodytes/genética , Animais , Elementos de DNA Transponíveis/genética , Duplicação Gênica/genética , Genótipo , Humanos , Dados de Sequência Molecular , Fenótipo , Filogenia , Especificidade da Espécie
9.
Mol Biol Evol ; 33(12): 3268-3283, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27795229

RESUMO

Natural selection is crucial for the adaptation of populations to their environments. Here, we present the first global study of natural selection in the Hominidae (humans and great apes) based on genome-wide information from population samples representing all extant species (including most subspecies). Combining several neutrality tests we create a multi-species map of signatures of natural selection covering all major types of natural selection. We find that the estimated efficiency of both purifying and positive selection varies between species and is significantly correlated with their long-term effective population size. Thus, even the modest differences in population size among the closely related Hominidae lineages have resulted in differences in their ability to remove deleterious alleles and to adapt to changing environments. Most signatures of balancing and positive selection are species-specific, with signatures of balancing selection more often being shared among species. We also identify loci with evidence of positive selection across several lineages. Notably, we detect signatures of positive selection in several genes related to brain function, anatomy, diet and immune processes. Our results contribute to a better understanding of human evolution by putting the evidence of natural selection in humans within its larger evolutionary context. The global map of natural selection in our closest living relatives is available as an interactive browser at http://tinyurl.com/nf8qmzh.


Assuntos
Hominidae/genética , Seleção Genética , Alelos , Animais , Evolução Biológica , Bases de Dados de Ácidos Nucleicos , Evolução Molecular , Estudos de Associação Genética , Variação Genética , Humanos/genética , Metagenômica/métodos , Polimorfismo Genético , Análise de Sequência de DNA/métodos
10.
Mol Biol Evol ; 33(6): 1435-47, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26831942

RESUMO

Balancing selection is an important evolutionary force that maintains genetic and phenotypic diversity in populations. Most studies in humans have focused on long-standing balancing selection, which persists over long periods of time and is generally shared across populations. But balanced polymorphisms can also promote fast adaptation, especially when the environment changes. To better understand the role of previously balanced alleles in novel adaptations, we analyzed in detail four loci as case examples of this mechanism. These loci show hallmark signatures of long-term balancing selection in African populations, but not in Eurasian populations. The disparity between populations is due to changes in allele frequencies, with intermediate frequency alleles in Africans (likely due to balancing selection) segregating instead at low- or high-derived allele frequency in Eurasia. We explicitly tested the support for different evolutionary models with an approximate Bayesian computation approach and show that the patterns in PKDREJ, SDR39U1, and ZNF473 are best explained by recent changes in selective pressure in certain populations. Specifically, we infer that alleles previously under long-term balancing selection, or alleles linked to them, were recently targeted by positive selection in Eurasian populations. Balancing selection thus likely served as a source of functional alleles that mediated subsequent adaptations to novel environments.


Assuntos
Genética Populacional/métodos , Seleção Genética , 3-Hidroxiacil-CoA Desidrogenases/genética , Alelos , Evolução Biológica , Proteínas de Ligação a DNA/genética , Bases de Dados de Ácidos Nucleicos , Evolução Molecular , Frequência do Gene , Interação Gene-Ambiente , Variação Genética , Humanos , Receptores de Superfície Celular/genética , Análise de Sequência de DNA/métodos
11.
PLoS Genet ; 10(10): e1004681, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25329461

RESUMO

Interferon lambda 4 gene (IFNL4) encodes IFN-λ4, a new member of the IFN-λ family with antiviral activity. In humans IFNL4 open reading frame is truncated by a polymorphic frame-shift insertion that eliminates IFN-λ4 and turns IFNL4 into a polymorphic pseudogene. Functional IFN-λ4 has antiviral activity but the elimination of IFN-λ4 through pseudogenization is strongly associated with improved clearance of hepatitis C virus (HCV) infection. We show that functional IFN-λ4 is conserved and evolutionarily constrained in mammals and thus functionally relevant. However, the pseudogene has reached moderately high frequency in Africa, America, and Europe, and near fixation in East Asia. In fact, the pseudogenizing variant is among the 0.8% most differentiated SNPs between Africa and East Asia genome-wide. Its raise in frequency is associated with additional evidence of positive selection, which is strongest in East Asia, where this variant falls in the 0.5% tail of SNPs with strongest signatures of recent positive selection genome-wide. Using a new Approximate Bayesian Computation (ABC) approach we infer that the pseudogenizing allele appeared just before the out-of-Africa migration and was immediately targeted by moderate positive selection; selection subsequently strengthened in European and Asian populations resulting in the high frequency observed today. This provides evidence for a changing adaptive process that, by favoring IFN-λ4 inactivation, has shaped present-day phenotypic diversity and susceptibility to disease.


Assuntos
Interleucinas/genética , Seleção Genética , África , Animais , Povo Asiático/genética , Sequência de Bases , Teorema de Bayes , Sequência Conservada , Ásia Oriental , Frequência do Gene , Predisposição Genética para Doença , Genética Populacional , Genoma Humano , Haplótipos , Hepatite C/genética , Hepatite C/virologia , Humanos , Interleucinas/fisiologia , Mamíferos/genética , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Pseudogenes , População Branca/genética
12.
Proc Natl Acad Sci U S A ; 111(18): 6666-71, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24753607

RESUMO

We present the DNA sequence of 17,367 protein-coding genes in two Neandertals from Spain and Croatia and analyze them together with the genome sequence recently determined from a Neandertal from southern Siberia. Comparisons with present-day humans from Africa, Europe, and Asia reveal that genetic diversity among Neandertals was remarkably low, and that they carried a higher proportion of amino acid-changing (nonsynonymous) alleles inferred to alter protein structure or function than present-day humans. Thus, Neandertals across Eurasia had a smaller long-term effective population than present-day humans. We also identify amino acid substitutions in Neandertals and present-day humans that may underlie phenotypic differences between the two groups. We find that genes involved in skeletal morphology have changed more in the lineage leading to Neandertals than in the ancestral lineage common to archaic and modern humans, whereas genes involved in behavior and pigmentation have changed more on the modern human lineage.


Assuntos
Exoma , Variação Genética , Homem de Neandertal/genética , Substituição de Aminoácidos , Animais , Croácia , DNA/genética , Frequência do Gene , Humanos , Paleontologia , Filogenia , Polimorfismo de Nucleotídeo Único , Sibéria , Espanha
13.
Mol Biol Evol ; 32(6): 1507-18, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25739735

RESUMO

As humans migrated around the world, they came to inhabit environments that differ widely in the soil levels of certain micronutrients, including selenium (Se). Coupled with cultural variation in dietary practices, these migrations have led to a wide range of Se intake levels in populations around the world. Both excess and deficiency of Se in the diet can have adverse health consequences in humans, with severe Se deficiency resulting in diseases of the bone and heart. Se is required by humans mainly due to its function in selenoproteins, which contain the amino acid selenocysteine as one of their constituent residues. To understand the evolution of the use of this micronutrient in humans, we surveyed the patterns of polymorphism in all selenoprotein genes and genes involved in their regulation in 50 human populations. We find that single nucleotide polymorphisms from populations in Asia, particularly in populations living in the extreme Se-deficient regions of China, have experienced concerted shifts in their allele frequencies. Such differentiation in allele frequencies across genes is not observed in other regions of the world and is not expected under neutral evolution, being better explained by the action of recent positive selection. Thus, recent changes in the use and regulation of Se may harbor the genetic adaptations that helped humans inhabit environments that do not provide adequate levels of Se in the diet.


Assuntos
Adaptação Fisiológica/genética , Dieta , Evolução Molecular , Selênio , Selenoproteínas/genética , China , Frequência do Gene , Humanos , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único , RNA Mensageiro/genética , Seleção Genética , Selênio/deficiência , Selenocisteína/genética
14.
Mol Biol Evol ; 32(5): 1186-96, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25605789

RESUMO

Balancing selection maintains advantageous genetic and phenotypic diversity in populations. When selection acts for long evolutionary periods selected polymorphisms may survive species splits and segregate in present-day populations of different species. Here, we investigate the role of long-term balancing selection in the evolution of protein-coding sequences in the Homo-Pan clade. We sequenced the exome of 20 humans, 20 chimpanzees, and 20 bonobos and detected eight coding trans-species polymorphisms (trSNPs) that are shared among the three species and have segregated for approximately 14 My of independent evolution. Although the majority of these trSNPs were found in three genes of the major histocompatibility locus cluster, we also uncovered one coding trSNP (rs12088790) in the gene LAD1. All these trSNPs show clustering of sequences by allele rather than by species and also exhibit other signatures of long-term balancing selection, such as segregating at intermediate frequency and lying in a locus with high genetic diversity. Here, we focus on the trSNP in LAD1, a gene that encodes for Ladinin-1, a collagenous anchoring filament protein of basement membrane that is responsible for maintaining cohesion at the dermal-epidermal junction; the gene is also an autoantigen responsible for linear IgA disease. This trSNP results in a missense change (Leucine257Proline) and, besides altering the protein sequence, is associated with changes in gene expression of LAD1.


Assuntos
Autoantígenos/genética , Evolução Molecular , Variação Genética , Colágenos não Fibrilares/genética , Seleção Genética , Animais , Exoma/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Pan paniscus , Pan troglodytes , Polimorfismo de Nucleotídeo Único , Colágeno Tipo XVII
15.
Mol Biol Evol ; 30(4): 938-50, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23292442

RESUMO

The whey acidic protein (WAP) four-disulfide core domain (WFDC) locus located on human chromosome 20q13 spans 19 genes with WAP and/or Kunitz domains. These genes participate in antimicrobial, immune, and tissue homoeostasis activities. Neighboring SEMG genes encode seminal proteins Semenogelin 1 and 2 (SEMG1 and SEMG2). WFDC and SEMG genes have a strikingly high rate of amino acid replacement (dN/dS), indicative of responses to adaptive pressures during vertebrate evolution. To better understand the selection pressures acting on WFDC genes in human populations, we resequenced 18 genes and 54 noncoding segments in 71 European (CEU), African (YRI), and Asian (CHB + JPT) individuals. Overall, we identified 484 single-nucleotide polymorphisms (SNPs), including 65 coding variants (of which 49 are nonsynonymous differences). Using classic neutrality tests, we confirmed the signature of short-term balancing selection on WFDC8 in Europeans and a signature of positive selection spanning genes PI3, SEMG1, SEMG2, and SLPI. Associated with the latter signal, we identified an unusually homogeneous-derived 100-kb haplotype with a frequency of 88% in Asian populations. A putative candidate variant targeted by selection is Thr56Ser in SEMG1, which may alter the proteolytic profile of SEMG1 and antimicrobial activities of semen. All the well-characterized genes residing in the WDFC locus encode proteins that appear to have a role in immunity and/or fertility, two processes that are often associated with adaptive evolution. This study provides further evidence that the WFDC and SEMG loci have been under strong adaptive pressure within the short timescale of modern humans.


Assuntos
Cromossomos Humanos Par 20/genética , Fertilidade/genética , Imunidade/genética , Polimorfismo de Nucleotídeo Único , Seleção Genética , Adaptação Biológica/genética , Substituição de Aminoácidos , Evolução Molecular , Frequência do Gene , Haplótipos , Humanos , Desequilíbrio de Ligação , Modelos Genéticos , Análise de Componente Principal , Proteínas/genética , Proteínas Secretadas pela Vesícula Seminal/genética , Análise de Sequência de DNA
16.
Genome Biol Evol ; 16(3)2024 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-38447079

RESUMO

Selenocysteine, the 21st amino acid specified by the genetic code, is a rare selenium-containing residue found in the catalytic site of selenoprotein oxidoreductases. Selenocysteine is analogous to the common cysteine amino acid, but its selenium atom offers physical-chemical properties not provided by the corresponding sulfur atom in cysteine. Catalytic sites with selenocysteine in selenoproteins of vertebrates are under strong purifying selection, but one enzyme, glutathione peroxidase 6 (GPX6), independently exchanged selenocysteine for cysteine <100 million years ago in several mammalian lineages. We reconstructed and assayed these ancient enzymes before and after selenocysteine was lost and up to today and found them to have lost their classic ability to reduce hydroperoxides using glutathione. This loss of function, however, was accompanied by additional amino acid changes in the catalytic domain, with protein sites concertedly changing under positive selection across distant lineages abandoning selenocysteine in glutathione peroxidase 6. This demonstrates a narrow evolutionary range in maintaining fitness when sulfur in cysteine impairs the catalytic activity of this protein, with pleiotropy and epistasis likely driving the observed convergent evolution. We propose that the mutations shared across distinct lineages may trigger enzymatic properties beyond those in classic glutathione peroxidases, rather than simply recovering catalytic rate. These findings are an unusual example of adaptive convergence across mammalian selenoproteins, with the evolutionary signatures possibly representing the evolution of novel oxidoreductase functions.


Assuntos
Selênio , Selenocisteína , Animais , Selenocisteína/genética , Selenocisteína/química , Selenocisteína/metabolismo , Cisteína/genética , Cisteína/metabolismo , Selênio/metabolismo , Selenoproteínas/genética , Selenoproteínas/química , Selenoproteínas/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Aminoácidos , Glutationa , Enxofre , Mamíferos/genética , Mamíferos/metabolismo
17.
Curr Biol ; 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39413789

RESUMO

Establishing the genetic and geographic structure of populations is fundamental, both to understand their evolutionary past and preserve their future. Nevertheless, the patterns of genetic population structure are unknown for most endangered species. This is the case for bonobos (Pan paniscus), which, together with chimpanzees (Pan troglodytes), are humans' closest living relatives. Chimpanzees live across equatorial Africa and are classified into four subspecies,1 with some genetic population substructure even within subspecies. Conversely, bonobos live exclusively in the Democratic Republic of Congo and are considered a homogeneous group with low genetic diversity,2 despite some population structure inferred from mtDNA. Nevertheless, mtDNA aside, their genetic structure remains unknown, hampering our understanding of the species and conservation efforts. Mapping bonobo genetic diversity in space is, however, challenging because, being endangered, only non-invasive sampling is possible for wild individuals. Here, we jointly analyze the exomes and mtDNA from 20 wild-born bonobos, the whole genomes of 10 captive bonobos, and the mtDNA of 136 wild individuals. We identify three genetically distinct bonobo groups of inferred Central, Western, and Far-Western geographic origin within the bonobo range. We estimate the split time between the central and western populations to be ∼145,000 years ago and genetic differentiation to be in the order of that of the closest chimpanzee subspecies. Furthermore, our estimated long-term Ne for Far-West (∼3,000) is among the lowest estimated for any great ape lineage. Our results highlight the need to attend to the bonobo substructure, both in terms of research and conservation.

18.
bioRxiv ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39386494

RESUMO

Genomic drivers of human-specific neurological traits remain largely undiscovered. Duplicated genes expanded uniquely in the human lineage likely contributed to brain evolution, including the increased complexity of synaptic connections between neurons and the dramatic expansion of the neocortex. Discovering duplicate genes is challenging because the similarity of paralogs makes them prone to sequence-assembly errors. To mitigate this issue, we analyzed a complete telomere-to-telomere human genome sequence (T2T-CHM13) and identified 213 duplicated gene families likely containing human-specific paralogs (>98% identity). Positing that genes important in universal human brain features should exist with at least one copy in all modern humans and exhibit expression in the brain, we narrowed in on 362 paralogs with at least one copy across thousands of ancestrally diverse genomes and present in human brain transcriptomes. Of these, 38 paralogs co-express in gene modules enriched for autism-associated genes and potentially contribute to human language and cognition. We narrowed in on 13 duplicate gene families with human-specific paralogs that are fixed among modern humans and show convincing brain expression patterns. Using long-read DNA sequencing revealed hidden variation across 200 modern humans of diverse ancestries, uncovering signatures of selection not previously identified, including possible balancing selection of CD8B. To understand the roles of duplicated genes in brain development, we generated zebrafish CRISPR "knockout" models of nine orthologs and transiently introduced mRNA-encoding paralogs, effectively "humanizing" the larvae. Morphometric, behavioral, and single-cell RNA-seq screening highlighted, for the first time, a possible role for GPR89B in dosage-mediated brain expansion and FRMPD2B function in altered synaptic signaling, both hallmark features of the human brain. Our holistic approach provides important insights into human brain evolution as well as a resource to the community for studying additional gene expansion drivers of human brain evolution.

19.
PLoS Genet ; 6(10): e1001157, 2010 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-20976248

RESUMO

A remarkable characteristic of the human major histocompatibility complex (MHC) is its extreme genetic diversity, which is maintained by balancing selection. In fact, the MHC complex remains one of the best-known examples of natural selection in humans, with well-established genetic signatures and biological mechanisms for the action of selection. Here, we present genetic and functional evidence that another gene with a fundamental role in MHC class I presentation, endoplasmic reticulum aminopeptidase 2 (ERAP2), has also evolved under balancing selection and contains a variant that affects antigen presentation. Specifically, genetic analyses of six human populations revealed strong and consistent signatures of balancing selection affecting ERAP2. This selection maintains two highly differentiated haplotypes (Haplotype A and Haplotype B), with frequencies 0.44 and 0.56, respectively. We found that ERAP2 expressed from Haplotype B undergoes differential splicing and encodes a truncated protein, leading to nonsense-mediated decay of the mRNA. To investigate the consequences of ERAP2 deficiency on MHC presentation, we correlated surface MHC class I expression with ERAP2 genotypes in primary lymphocytes. Haplotype B homozygotes had lower levels of MHC class I expressed on the surface of B cells, suggesting that naturally occurring ERAP2 deficiency affects MHC presentation and immune response. Interestingly, an ERAP2 paralog, endoplasmic reticulum aminopeptidase 1 (ERAP1), also shows genetic signatures of balancing selection. Together, our findings link the genetic signatures of selection with an effect on splicing and a cellular phenotype. Although the precise selective pressure that maintains polymorphism is unknown, the demonstrated differences between the ERAP2 splice forms provide important insights into the potential mechanism for the action of selection.


Assuntos
Aminopeptidases/genética , Apresentação de Antígeno , Haplótipos/genética , Seleção Genética , Aminopeptidases/imunologia , Povo Asiático/genética , População Negra/genética , Frequência do Gene , Genética Populacional , Genótipo , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Indígenas Norte-Americanos/genética , Antígenos de Histocompatibilidade Menor , Filogenia , Polimorfismo de Nucleotídeo Único , Biossíntese de Proteínas , Processamento Pós-Transcricional do RNA , Splicing de RNA , População Branca/genética
20.
Genome Biol Evol ; 15(3)2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36821771

RESUMO

The identification of genomic regions and genes that have evolved under natural selection is a fundamental objective in the field of evolutionary genetics. While various approaches have been established for the detection of targets of positive selection, methods for identifying targets of balancing selection, a form of natural selection that preserves genetic and phenotypic diversity within populations, have yet to be fully developed. Despite this, balancing selection is increasingly acknowledged as a significant driver of diversity within populations, and the identification of its signatures in genomes is essential for understanding its role in evolution. In recent years, a plethora of sophisticated methods has been developed for the detection of patterns of linked variation produced by balancing selection, such as high levels of polymorphism, altered allele-frequency distributions, and polymorphism sharing across divergent populations. In this review, we provide a comprehensive overview of classical and contemporary methods, offer guidance on the choice of appropriate methods, and discuss the importance of avoiding artifacts and of considering alternative evolutionary processes. The increasing availability of genome-scale datasets holds the potential to assist in the identification of new targets and the quantification of the prevalence of balancing selection, thus enhancing our understanding of its role in natural populations.


Assuntos
Variação Genética , Polimorfismo Genético , Frequência do Gene , Genoma , Seleção Genética , Genética Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA