Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Opt Express ; 23(10): 13141-52, 2015 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-26074567

RESUMO

We introduce a new optical technique where a train of short optical pulses is utilized to disturb a trapped microscopic particle. Using fast (250 kHz) and accurate (nm) detection of the position of the particle, accurately synchronized to the repetition rate of the laser pulses, we can coherently superimpose the displacement caused by each individual laser pulse. Thereby we are able to both bypass the influence from the Brownian motion of the trapped particle and to simultaneously increase the ability to localize its average trajectory by √n, where n is the number of repetitive pulses. In the results presented here we utilize a train of 1200 pulses to kick a 5 µm polystyrene sphere and obtain a spatial resolution corresponding to 0.09 nm and a time resolution of 4 µs. The magnitude of the optical force pushing the particle corresponds to ∼ 10(4)g and enables an investigation of both the hydrodynamical drag and the inertial effects caused by the particle and the surrounding liquid. Our results enables a more accurate testing of the existing extended models for the hydrodynamic drag and we discuss the observed agreement between experiments and theory.

2.
Acta Oncol ; 54(9): 1496-500, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26198652

RESUMO

BACKGROUND: Radiotherapy based on MRI only (MRI-only RT) shows a promising potential for the brain. Much research focuses on creating a pseudo computed tomography (pCT) from MRI for treatment planning while little attention is often paid to the treatment delivery. Here, we investigate if cone beam CT (CBCT) can be used for MRI-only image-guided radiotherapy (IGRT) and for verifying the correctness of the corresponding pCT. MATERIAL AND METHODS: Six patients receiving palliative cranial RT were included in the study. Each patient had three-dimensional (3D) T1W MRI, a CBCT and a CT for reference. Further, a pCT was generated using a patch-based approach. MRI, pCT and CT were placed in the same frame of reference, matched to CBCT and the differences noted. Paired pCT-CT and pCT-CBCT data were created in bins of 10 HU and the absolute difference calculated. The data were converted to relative electron densities (RED) using the CT or a CBCT calibration curve. The latter was either based on a CBCT phantom (phan) or a paired CT-CBCT population (pop) of the five other patients. RESULTS: Non-significant (NS) differences in the pooled CT-CBCT, MRI-CBCT and pCT-CBCT transformations were noted. The largest deviations from the CT-CBCT reference were < 1 mm and 1°. The average median absolute error (MeAE) in HU was 184 ± 34 and 299 ± 34 on average for pCT-CT and pCT-CBCT, respectively, and was significantly different (p < 0.01) in each patient. The average MeAE in RED was 0.108 ± 0.025, 0.104 ± 0.011 and 0.099 ± 0.017 for pCT-CT, pCT-CBCT phan (p < 0.01 on 2 patients) and pCT-CBCT pop (NS), respectively. CONCLUSIONS: CBCT can be used for patient setup with either MRI or pCT as reference. The correctness of pCT can be verified from CBCT using a population-based calibration curve in the treatment geometry.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Tomografia Computadorizada de Feixe Cônico , Radioterapia Guiada por Imagem , Neoplasias Encefálicas/patologia , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Cuidados Paliativos , Planejamento da Radioterapia Assistida por Computador
3.
Phys Imaging Radiat Oncol ; 18: 55-60, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34258409

RESUMO

BACKGROUND AND PURPOSE: Radiotherapy (RT) based on magentic resonance imaging (MRI) only is currently used clinically in the pelvis. A synthetic computed tomography (sCT) is needed for dose planning. Here, we investigate the accuracy of cone beam CT (CBCT) based MRI-only image guided RT (IGRT) and sCT image quality. MATERIALS AND METHODS: CT, MRI and CBCT scans of ten prostate cancer patients were included. The MRI was converted to a sCT using a multi-atlas approach. The sCT, CT and MR images were auto-matched with the CBCT on the bony anatomy. Paired sCT-CT and sCT-CBCT data were created. CT numbers were converted to relative electron (RED) and mass densities (DES) using a standard calibration curve for the CT and sCT. For the CBCT RED/DES conversion, a phantom and paired CT-CBCT population based calibration curve was used. For the latter, the CBCT numbers were averaged in 100 HU bins and the known RED/DES of the CT were assigned. The paired sCT-CT and sCT-CBCT data were averaged in bins of 10 HU or 0.01 RED/DES. The median absolute error (MeAE) between the sCT-CT and sCT-CBCT bins was calculated. Wilcoxon rank-sum tests were carried out for the IGRT and MeAE study. RESULTS: The mean sCT or MR IGRT difference from CT was ≤ 2 mm but significant differences were observed. A CBCT HU or phantom-based RED/DES MeAE did not estimate the sCT quality similar to a CT based MeAE but the CBCT population-based RED/DES MeAE did. CONCLUSIONS: MRI-only CBCT-based IGRT seems feasible but caution is advised. A MeAE around 0.1 DES could call for sCT quality inspection.

4.
Med Phys ; 43(8): 4742, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27487892

RESUMO

PURPOSE: In radiotherapy based only on magnetic resonance imaging (MRI), knowledge about tissue electron densities must be derived from the MRI. This can be achieved by converting the MRI scan to the so-called pseudo-computed tomography (pCT). An obstacle is that the voxel intensities in conventional MRI scans are not uniquely related to electron density. The authors previously demonstrated that a patch-based method could produce accurate pCTs of the brain using conventional T1-weighted MRI scans. The method was driven mainly by local patch similarities and relied on simple affine registrations between an atlas database of the co-registered MRI/CT scan pairs and the MRI scan to be converted. In this study, the authors investigate the applicability of the patch-based approach in the pelvis. This region is challenging for a method based on local similarities due to the greater inter-patient variation. The authors benchmark the method against a baseline pCT strategy where all voxels inside the body contour are assigned a water-equivalent bulk density. Furthermore, the authors implement a parallelized approximate patch search strategy to speed up the pCT generation time to a more clinically relevant level. METHODS: The data consisted of CT and T1-weighted MRI scans of 10 prostate patients. pCTs were generated using an approximate patch search algorithm in a leave-one-out fashion and compared with the CT using frequently described metrics such as the voxel-wise mean absolute error (MAEvox) and the deviation in water-equivalent path lengths. Furthermore, the dosimetric accuracy was tested for a volumetric modulated arc therapy plan using dose-volume histogram (DVH) point deviations and γ-index analysis. RESULTS: The patch-based approach had an average MAEvox of 54 HU; median deviations of less than 0.4% in relevant DVH points and a γ-index pass rate of 0.97 using a 1%/1 mm criterion. The patch-based approach showed a significantly better performance than the baseline water pCT in almost all metrics. The approximate patch search strategy was 70x faster than a brute-force search, with an average prediction time of 20.8 min. CONCLUSIONS: The authors showed that a patch-based method based on affine registrations and T1-weighted MRI could generate accurate pCTs of the pelvis. The main source of differences between pCT and CT was positional changes of air pockets and body outline.


Assuntos
Imageamento por Ressonância Magnética , Pelve/diagnóstico por imagem , Radioterapia Guiada por Imagem/métodos , Tomografia Computadorizada por Raios X , Humanos , Masculino , Pelve/efeitos da radiação , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia
5.
Med Phys ; 42(4): 1596-605, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25832050

RESUMO

PURPOSE: In radiotherapy (RT) based on magnetic resonance imaging (MRI) as the only modality, the information on electron density must be derived from the MRI scan by creating a so-called pseudo computed tomography (pCT). This is a nontrivial task, since the voxel-intensities in an MRI scan are not uniquely related to electron density. To solve the task, voxel-based or atlas-based models have typically been used. The voxel-based models require a specialized dual ultrashort echo time MRI sequence for bone visualization and the atlas-based models require deformable registrations of conventional MRI scans. In this study, we investigate the potential of a patch-based method for creating a pCT based on conventional T1-weighted MRI scans without using deformable registrations. We compare this method against two state-of-the-art methods within the voxel-based and atlas-based categories. METHODS: The data consisted of CT and MRI scans of five cranial RT patients. To compare the performance of the different methods, a nested cross validation was done to find optimal model parameters for all the methods. Voxel-wise and geometric evaluations of the pCTs were done. Furthermore, a radiologic evaluation based on water equivalent path lengths was carried out, comparing the upper hemisphere of the head in the pCT and the real CT. Finally, the dosimetric accuracy was tested and compared for a photon treatment plan. RESULTS: The pCTs produced with the patch-based method had the best voxel-wise, geometric, and radiologic agreement with the real CT, closely followed by the atlas-based method. In terms of the dosimetric accuracy, the patch-based method had average deviations of less than 0.5% in measures related to target coverage. CONCLUSIONS: We showed that a patch-based method could generate an accurate pCT based on conventional T1-weighted MRI sequences and without deformable registrations. In our evaluations, the method performed better than existing voxel-based and atlas-based methods and showed a promising potential for RT of the brain based only on MRI.


Assuntos
Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Radioterapia Guiada por Imagem/métodos , Tomografia Computadorizada por Raios X/métodos , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Atlas como Assunto , Encéfalo/patologia , Feminino , Cabeça/diagnóstico por imagem , Cabeça/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Fótons/uso terapêutico , Radiometria
6.
Phys Med Biol ; 59(23): 7501-19, 2014 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-25393873

RESUMO

Radiotherapy (RT) based on magnetic resonance imaging (MRI) as the only modality, so-called MRI-only RT, would remove the systematic registration error between MR and computed tomography (CT), and provide co-registered MRI for assessment of treatment response and adaptive RT. Electron densities, however, need to be assigned to the MRI images for dose calculation and patient setup based on digitally reconstructed radiographs (DRRs). Here, we investigate the geometric and dosimetric performance for a number of popular voxel-based methods to generate a so-called pseudo CT (pCT). Five patients receiving cranial irradiation, each containing a co-registered MRI and CT scan, were included. An ultra short echo time MRI sequence for bone visualization was used. Six methods were investigated for three popular types of voxel-based approaches; (1) threshold-based segmentation, (2) Bayesian segmentation and (3) statistical regression. Each approach contained two methods. Approach 1 used bulk density assignment of MRI voxels into air, soft tissue and bone based on logical masks and the transverse relaxation time T2 of the bone. Approach 2 used similar bulk density assignments with Bayesian statistics including or excluding additional spatial information. Approach 3 used a statistical regression correlating MRI voxels with their corresponding CT voxels. A similar photon and proton treatment plan was generated for a target positioned between the nasal cavity and the brainstem for all patients. The CT agreement with the pCT of each method was quantified and compared with the other methods geometrically and dosimetrically using both a number of reported metrics and introducing some novel metrics. The best geometrical agreement with CT was obtained with the statistical regression methods which performed significantly better than the threshold and Bayesian segmentation methods (excluding spatial information). All methods agreed significantly better with CT than a reference water MRI comparison. The mean dosimetric deviation for photons and protons compared to the CT was about 2% and highest in the gradient dose region of the brainstem. Both the threshold based method and the statistical regression methods showed the highest dosimetrical agreement.Generation of pCTs using statistical regression seems to be the most promising candidate for MRI-only RT of the brain. Further, the total amount of different tissues needs to be taken into account for dosimetric considerations regardless of their correct geometrical position.


Assuntos
Algoritmos , Neoplasias Encefálicas/radioterapia , Imageamento por Ressonância Magnética/métodos , Radiometria/métodos , Tomografia Computadorizada por Raios X/métodos , Idoso , Idoso de 80 Anos ou mais , Teorema de Bayes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA