Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 588
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(2): 283-298.e17, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35021065

RESUMO

Gasdermins are a family of structurally related proteins originally described for their role in pyroptosis. Gasdermin B (GSDMB) is currently the least studied, and while its association with genetic susceptibility to chronic mucosal inflammatory disorders is well established, little is known about its functional relevance during active disease states. Herein, we report increased GSDMB in inflammatory bowel disease, with single-cell analysis identifying epithelial specificity to inflamed colonocytes/crypt top colonocytes. Surprisingly, mechanistic experiments and transcriptome profiling reveal lack of inherent GSDMB-dependent pyroptosis in activated epithelial cells and organoids but instead point to increased proliferation and migration during in vitro wound closure, which arrests in GSDMB-deficient cells that display hyper-adhesiveness and enhanced formation of vinculin-based focal adhesions dependent on PDGF-A-mediated FAK phosphorylation. Importantly, carriage of disease-associated GSDMB SNPs confers functional defects, disrupting epithelial restitution/repair, which, altogether, establishes GSDMB as a critical factor for restoration of epithelial barrier function and the resolution of inflammation.


Assuntos
Células Epiteliais/metabolismo , Células Epiteliais/patologia , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Piroptose , Sequência de Bases , Estudos de Casos e Controles , Adesão Celular/efeitos dos fármacos , Adesão Celular/genética , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Células Epiteliais/efeitos dos fármacos , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Células HEK293 , Células HT29 , Humanos , Doenças Inflamatórias Intestinais/genética , Metotrexato/farmacologia , Mutação/genética , Fosforilação/efeitos dos fármacos , Polimorfismo de Nucleotídeo Único/genética , Piroptose/efeitos dos fármacos , Piroptose/genética , Reprodutibilidade dos Testes , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Regulação para Cima/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Cicatrização/genética
3.
Bioessays ; : e2400160, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39301984

RESUMO

The actin cytoskeleton is a key cellular structure subverted by pathogens to infect and survive in or on host cells. Several pathogenic strains of Escherichia coli, such as enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli (EHEC), developed a unique mechanism to remodel the actin cytoskeleton that involves the assembly of actin filament-rich pedestals beneath the bacterial attachment sites. Actin pedestal assembly is driven by bacterial effectors injected into the host cells, and this structure is important for EPEC and EHEC colonization. While the interplay between bacterial effectors and the actin polymerization machinery of host cells is well-understood, how other mechanisms of actin filament remodelling regulate pedestal assembly and bacterial attachment are poorly investigated. This review discusses the gaps in our understanding of the complexity of the actin cytoskeletal remodelling during EPEC and EHEC infection. We describe possible roles of actin depolymerizing, crosslinking and motor proteins in pedestal dynamics, and bacterial interactions with the host cells. We also discuss the biological significance of pedestal assembly for bacterial infection.

4.
J Biol Chem ; 300(1): 105530, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072048

RESUMO

Fibroblast to myofibroblast transdifferentiation mediates numerous fibrotic disorders, such as idiopathic pulmonary fibrosis (IPF). We have previously demonstrated that non-muscle myosin II (NMII) is activated in response to fibrotic lung extracellular matrix, thereby mediating myofibroblast transdifferentiation. NMII-A is known to interact with the calcium-binding protein S100A4, but the mechanism by which S100A4 regulates fibrotic disorders is unclear. In this study, we show that fibroblast S100A4 is a calcium-dependent, mechanoeffector protein that is uniquely sensitive to pathophysiologic-range lung stiffness (8-25 kPa) and thereby mediates myofibroblast transdifferentiation. Re-expression of endogenous fibroblast S100A4 rescues the myofibroblastic phenotype in S100A4 KO fibroblasts. Analysis of NMII-A/actin dynamics reveals that S100A4 mediates the unraveling and redistribution of peripheral actomyosin to a central location, resulting in a contractile myofibroblast. Furthermore, S100A4 loss protects against murine in vivo pulmonary fibrosis, and S100A4 expression is dysregulated in IPF. Our data reveal a novel mechanosensor/effector role for endogenous fibroblast S100A4 in inducing cytoskeletal redistribution in fibrotic disorders such as IPF.


Assuntos
Fibrose Pulmonar Idiopática , Mecanotransdução Celular , Miofibroblastos , Proteína A4 de Ligação a Cálcio da Família S100 , Animais , Camundongos , Transdiferenciação Celular , Fibrose , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Pulmão/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Proteína A4 de Ligação a Cálcio da Família S100/genética , Proteína A4 de Ligação a Cálcio da Família S100/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(31): e2204407119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35881794

RESUMO

Cellular metabolism is regulated over space and time to ensure that energy production is efficiently matched with consumption. Fluorescent biosensors are useful tools for studying metabolism as they enable real-time detection of metabolite abundance with single-cell resolution. For monitoring glycolysis, the intermediate fructose 1,6-bisphosphate (FBP) is a particularly informative signal as its concentration is strongly correlated with flux through the whole pathway. Using GFP insertion into the ligand-binding domain of the Bacillus subtilis transcriptional regulator CggR, we developed a fluorescent biosensor for FBP termed HYlight. We demonstrate that HYlight can reliably report the real-time dynamics of glycolysis in living cells and tissues, driven by various metabolic or pharmacological perturbations, alone or in combination with other physiologically relevant signals. Using this sensor, we uncovered previously unknown aspects of ß-cell glycolytic heterogeneity and dynamics.


Assuntos
Técnicas Biossensoriais , Frutose , Glicólise , Análise de Célula Única , Fluorescência , Frutose/análise , Frutosedifosfatos/análise , Humanos , Células Secretoras de Insulina/química , Células Secretoras de Insulina/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/genética , Análise de Célula Única/métodos
6.
Diabetologia ; 67(3): 528-546, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38127123

RESUMO

AIMS/HYPOTHESIS: Diabetes mellitus is associated with impaired insulin secretion, often aggravated by oversecretion of glucagon. Therapeutic interventions should ideally correct both defects. Glucagon-like peptide 1 (GLP-1) has this capability but exactly how it exerts its glucagonostatic effect remains obscure. Following its release GLP-1 is rapidly degraded from GLP-1(7-36) to GLP-1(9-36). We hypothesised that the metabolite GLP-1(9-36) (previously believed to be biologically inactive) exerts a direct inhibitory effect on glucagon secretion and that this mechanism becomes impaired in diabetes. METHODS: We used a combination of glucagon secretion measurements in mouse and human islets (including islets from donors with type 2 diabetes), total internal reflection fluorescence microscopy imaging of secretory granule dynamics, recordings of cytoplasmic Ca2+ and measurements of protein kinase A activity, immunocytochemistry, in vivo physiology and GTP-binding protein dissociation studies to explore how GLP-1 exerts its inhibitory effect on glucagon secretion and the role of the metabolite GLP-1(9-36). RESULTS: GLP-1(7-36) inhibited glucagon secretion in isolated islets with an IC50 of 2.5 pmol/l. The effect was particularly strong at low glucose concentrations. The degradation product GLP-1(9-36) shared this capacity. GLP-1(9-36) retained its glucagonostatic effects after genetic/pharmacological inactivation of the GLP-1 receptor. GLP-1(9-36) also potently inhibited glucagon secretion evoked by ß-adrenergic stimulation, amino acids and membrane depolarisation. In islet alpha cells, GLP-1(9-36) led to inhibition of Ca2+ entry via voltage-gated Ca2+ channels sensitive to ω-agatoxin, with consequential pertussis-toxin-sensitive depletion of the docked pool of secretory granules, effects that were prevented by the glucagon receptor antagonists REMD2.59 and L-168049. The capacity of GLP-1(9-36) to inhibit glucagon secretion and reduce the number of docked granules was lost in alpha cells from human donors with type 2 diabetes. In vivo, high exogenous concentrations of GLP-1(9-36) (>100 pmol/l) resulted in a small (30%) lowering of circulating glucagon during insulin-induced hypoglycaemia. This effect was abolished by REMD2.59, which promptly increased circulating glucagon by >225% (adjusted for the change in plasma glucose) without affecting pancreatic glucagon content. CONCLUSIONS/INTERPRETATION: We conclude that the GLP-1 metabolite GLP-1(9-36) is a systemic inhibitor of glucagon secretion. We propose that the increase in circulating glucagon observed following genetic/pharmacological inactivation of glucagon signalling in mice and in people with type 2 diabetes reflects the removal of GLP-1(9-36)'s glucagonostatic action.


Assuntos
Diabetes Mellitus Tipo 2 , Hipoglicemia , Ilhotas Pancreáticas , Fragmentos de Peptídeos , Humanos , Glucagon/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Ilhotas Pancreáticas/metabolismo , Hipoglicemia/metabolismo , Insulina/metabolismo
7.
Gastroenterology ; 165(5): 1180-1196, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37507073

RESUMO

BACKGROUND & AIMS: Fibroblasts play a key role in stricture formation in Crohn's disease (CD) but understanding its pathogenesis requires a systems-level investigation to uncover new treatment targets. We studied full-thickness CD tissues to characterize fibroblast heterogeneity and function by generating the first single-cell RNA sequencing (scRNAseq) atlas of strictured bowel and providing proof of principle for therapeutic target validation. METHODS: We performed scRNAseq of 13 fresh full-thickness CD resections containing noninvolved, inflamed nonstrictured, and strictured segments as well as 7 normal non-CD bowel segments. Each segment was separated into mucosa/submucosa or muscularis propria and analyzed separately for a total of 99 tissue samples and 409,001 cells. We validated cadherin-11 (CDH11) as a potential therapeutic target by using whole tissues, isolated intestinal cells, NanoString nCounter, next-generation sequencing, proteomics, and animal models. RESULTS: Our integrated dataset revealed fibroblast heterogeneity in strictured CD with the majority of stricture-selective changes detected in the mucosa/submucosa, but not the muscle layer. Cell-cell interaction modeling revealed CXCL14+ as well as MMP/WNT5A+ fibroblasts displaying a central signaling role in CD strictures. CDH11, a fibroblast cell-cell adhesion molecule, was broadly expressed and up-regulated, and its profibrotic function was validated using NanoString nCounter, RNA sequencing, tissue target expression, in vitro gain- and loss-of-function experiments, proteomics, and knock-out and antibody-mediated CDH11 blockade in experimental colitis. CONCLUSIONS: A full-thickness bowel scRNAseq atlas revealed previously unrecognized fibroblast heterogeneity and interactions in CD strictures and CDH11 was validated as a potential therapeutic target. These results provide a new resource for a better understanding of CD stricture formation and open potential therapeutic developments. This work has been posted as a preprint on Biorxiv under doi: 10.1101/2023.04.03.534781.


Assuntos
Colite , Doença de Crohn , Animais , Doença de Crohn/genética , Doença de Crohn/patologia , Constrição Patológica , Intestinos/patologia , Colite/patologia , Fibroblastos/patologia
8.
Diabet Med ; : e15434, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39255356

RESUMO

BACKGROUND: Pancreatic islet ß-cell mass expands during pregnancy, but underlying mechanisms are not fully understood. This study examines the impact of pregnancy and cafeteria diet on islet morphology, associated cellular proliferation/apoptosis rates as well as ß-cell lineage. METHODS: Non-pregnant and pregnant Ins1Cre/+;Rosa26-eYFP transgenic mice were maintained on either normal or high-fat cafeteria diet, with pancreatic tissue obtained at 18 days gestation. Immunohistochemical changes in islet morphology, ß-/α-cell proliferation and apoptosis, as well as islet cell identity, neogenesis and ductal cell transdifferentiation were assessed. RESULTS: Pregnant normal diet mice displayed an increase in body weight and glycaemia. Cafeteria feeding attenuated this weight gain while causing overt hyperglycaemia. Pregnant mice maintained on a normal diet exhibited typical expansion in islet and ß-cell area, owing to increased ß-cell proliferation and survival as well as ductal to ß-cell transdifferentiation and ß-cell neogenesis, alongside decreased ß-cell dedifferentiation. Such pregnancy-induced islet adaptations were severely restricted by cafeteria diet. Accordingly, islets from these mice displayed high levels of ß-cell apoptosis and dedifferentiation, together with diminished ß-cell proliferation and lack of pregnancy-induced ß-cell neogenesis and transdifferentiation, entirely opposing islet cell modifications observed in pregnant mice maintained on a normal diet. CONCLUSION: Augmentation of ß-cell mass during gestation arises through various mechanisms that include proliferation and survival of existing ß-cells, transdifferentiation of ductal cells as well as ß-cell neogenesis. Remarkably, cafeteria feeding almost entirely annuls pregnancy-induced islet adaptations, which may contribute to the development of gestational diabetes in the setting of dietary provoked metabolic stress.

9.
Diabetes Obes Metab ; 26(1): 16-31, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37845573

RESUMO

The development of pancreatic islet endocrine cells is a tightly regulated process leading to the generation of distinct cell types harbouring different hormones in response to small changes in environmental stimuli. Cell differentiation is driven by transcription factors that are also critical for the maintenance of the mature islet cell phenotype. Alteration of the insulin-secreting ß-cell transcription factor set by prolonged metabolic stress, associated with the pathogenesis of diabetes, obesity or pregnancy, results in the loss of ß-cell identity through de- or transdifferentiation. Importantly, the glucose-lowering effects of approved and experimental antidiabetic agents, including glucagon-like peptide-1 mimetics, novel peptides and small molecules, have been associated with preventing or reversing ß-cell dedifferentiation or promoting the transdifferentiation of non-ß-cells towards an insulin-positive ß-cell-like phenotype. Therefore, we review the manifestations of islet cell plasticity in various experimental settings and discuss the physiological and therapeutic sides of this phenomenon, focusing on strategies for preventing ß-cell loss or generating new ß-cells in diabetes. A better understanding of the molecular mechanisms underpinning islet cell plasticity is a prerequisite for more targeted therapies to help prevent ß-cell decline in diabetes.


Assuntos
Diabetes Mellitus , Células Secretoras de Insulina , Ilhotas Pancreáticas , Humanos , Plasticidade Celular , Ilhotas Pancreáticas/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Diabetes Mellitus/metabolismo , Transdiferenciação Celular
10.
Diabetes Obes Metab ; 26(11): 4945-4957, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39192525

RESUMO

AIM: To thoroughly investigate the impact of sustained neuropeptide Y4 receptor (NPY4R) activation in obesity-associated diabetes. METHODS: Initially, the prolonged pharmacodynamic profile of the enzymatically stable pancreatic polypeptide (PP) analogue, [P3]PP, was confirmed in normal mice up to 24 h after injection. Subsequent to this, [P3]PP was administered twice daily (25 nmol/kg) for 28 days to high-fat-fed mice with streptozotocin-induced insulin deficiency, known as HFF/STZ mice. RESULTS: Treatment with [P3]PP for 28 days reduced energy intake and was associated with notable weight loss. In addition, circulating glucose was returned to values of approximately 8 mmol/L in [P3]PP-treated mice, with significantly increased plasma insulin and decreased glucagon concentrations. Glucose tolerance and glucose-stimulated insulin secretion were improved in [P3]PP-treated HFF/STZ mice, with no obvious effect on peripheral insulin sensitivity. Benefits on insulin secretion were associated with elevated pancreatic insulin content as well as islet and beta-cell areas. Positive effects on islet architecture were linked to increased beta-cell proliferation and decreased apoptosis. Treatment intervention also decreased islet alpha-cell area, but pancreatic glucagon content remained unaffected. In addition, [P3]PP-treated HFF/STZ mice presented with reduced plasma alanine transaminase and aspartate transaminase levels, with no change in circulating amylase concentrations. In terms of plasma lipid profile, triglyceride and cholesterol levels were significantly decreased by [P3]PP treatment, when compared to saline controls. CONCLUSION: Collectively, these data highlight for the first time the potential of enzymatically stable PP analogues for the treatment of obesity and related diabetes.


Assuntos
Diabetes Mellitus Experimental , Células Secretoras de Insulina , Insulina , Obesidade , Polipeptídeo Pancreático , Redução de Peso , Animais , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Obesidade/complicações , Obesidade/tratamento farmacológico , Camundongos , Masculino , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Redução de Peso/efeitos dos fármacos , Glicemia/metabolismo , Glicemia/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Dieta Hiperlipídica/efeitos adversos , Receptores de Neuropeptídeo Y/metabolismo , Resistência à Insulina , Apoptose/efeitos dos fármacos
11.
Parasitol Res ; 123(6): 229, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819740

RESUMO

The intricate relationships between parasites and hosts encompass a wide range of levels, from molecular interactions to population dynamics. Parasites influence not only the physiological processes in the host organism, but also the entire ecosystem, affecting mortality of individuals, the number of offspring through parasitic castration, and matter and energy cycles. Understanding the molecular mechanisms that govern host-parasite relationships and their impact on host physiology and environment remains challenging. In this study, we analyzed how infection with Microphallus trematodes affects the metabolome of two Littorina snail species inhabiting different intertidal zone shore levels. We applied non-targeted GC-MS-based metabolomics to analyze biochemical shifts induced by trematode infection in a host organism. We have identified changes in energy, amino acid, sugar, and lipid metabolism. In particular, we observed intensified amino acid catabolism and nitrogenous catabolites (glutamine, urea) production. These changes primarily correlated with infection and interspecies differences of the hosts rather than shore level. The changes detected in the host metabolism indicate that other aspects of life may have been affected, both within the host organism and at a supra-organismal level. Therefore, we explored changes in microbiota composition, deviations in the host molluscs behavior, and acetylcholinesterase activity (ACE, an enzyme involved in neuromuscular transmission) in relation to infection. Infected snails displayed changes in their microbiome composition. Decreased ACE activity in snails was associated with reduced mobility, but whether it is associated with trematode infection remains unclear. The authors suggest a connection between the identified biochemical changes and the deformation of the shell of molluscs, changes in their behavior, and the associated microbiome. The role of parasitic systems formed by microphallid trematodes and Littorina snails in the nitrogen cycle at the ecosystem level is also assumed.


Assuntos
Interações Hospedeiro-Parasita , Caramujos , Trematódeos , Animais , Trematódeos/fisiologia , Trematódeos/metabolismo , Caramujos/parasitologia , Metaboloma , Metabolômica , Cromatografia Gasosa-Espectrometria de Massas
12.
Molecules ; 29(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38893295

RESUMO

Chronic inflammation contributes to a number of diseases. Therefore, control of the inflammatory response is an important therapeutic goal. To identify novel anti-inflammatory compounds, we synthesized and screened a library of 80 pyrazolo[1,5-a]quinazoline compounds and related derivatives. Screening of these compounds for their ability to inhibit lipopolysaccharide (LPS)-induced nuclear factor κB (NF-κB) transcriptional activity in human THP-1Blue monocytic cells identified 13 compounds with anti-inflammatory activity (IC50 < 50 µM) in a cell-based test system, with two of the most potent being compounds 13i (5-[(4-sulfamoylbenzyl)oxy]pyrazolo[1,5-a]quinazoline-3-carboxamide) and 16 (5-[(4-(methylsulfinyl)benzyloxy]pyrazolo[1,5-a]quinazoline-3-carboxamide). Pharmacophore mapping of potential targets predicted that 13i and 16 may be ligands for three mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinase 2 (ERK2), p38α, and c-Jun N-terminal kinase 3 (JNK3). Indeed, molecular modeling supported that these compounds could effectively bind to ERK2, p38α, and JNK3, with the highest complementarity to JNK3. The key residues of JNK3 important for this binding were identified. Moreover, compounds 13i and 16 exhibited micromolar binding affinities for JNK1, JNK2, and JNK3. Thus, our results demonstrate the potential for developing lead anti-inflammatory drugs based on the pyrazolo[1,5-a]quinazoline and related scaffolds that are targeted toward MAPKs.


Assuntos
Anti-Inflamatórios , Quinazolinas , Humanos , Quinazolinas/farmacologia , Quinazolinas/química , Quinazolinas/síntese química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/síntese química , NF-kappa B/metabolismo , NF-kappa B/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Simulação de Acoplamento Molecular , Pirazóis/química , Pirazóis/farmacologia , Pirazóis/síntese química , Relação Estrutura-Atividade , Células THP-1
13.
Molecules ; 29(16)2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39202899

RESUMO

IQ-1 (11H-indeno[1,2-b]quinoxalin-11-one oxime) is a specific c-Jun N-terminal kinase (JNK) inhibitor with anticancer and neuro- and cardioprotective properties. Because aryloxime derivatives undergo cytochrome P450-catalyzed oxidation to nitric oxide (NO) and ketones in liver microsomes, NO formation may be an additional mechanism of IQ-1 pharmacological action. In the present study, electron paramagnetic resonance (EPR) of the Fe2+ complex with diethyldithiocarbamate (DETC) as a spin trap and hemoglobin (Hb) was used to detect NO formation from IQ-1 in the liver and blood of rats, respectively, after IQ-1 intraperitoneal administration (50 mg/kg). Introducing the spin trap and IQ-1 led to signal characteristics of the complex (DETC)2-Fe2+-NO in rat liver. Similarly, the introduction of the spin trap components and IQ-1 resulted in an increase in the Hb-NO signal for both the R- and the T-conformers in blood samples. The density functional theory (DFT) calculations were in accordance with the experimental data and indicated that the NO formation of IQ-1 through the action of superoxide anion radical is thermodynamically favorable. We conclude that the administration of IQ-1 releases NO during its oxidoreductive bioconversion in vivo.


Assuntos
Óxido Nítrico , Oximas , Quinoxalinas , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Animais , Óxido Nítrico/metabolismo , Oximas/química , Oximas/farmacologia , Ratos , Quinoxalinas/química , Quinoxalinas/farmacologia , Fígado/metabolismo , Fígado/efeitos dos fármacos , Masculino , Hemoglobinas/metabolismo , Doadores de Óxido Nítrico/farmacologia , Doadores de Óxido Nítrico/química , Ditiocarb/farmacologia , Ditiocarb/química
14.
Molecules ; 29(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39125014

RESUMO

The data on the synthesis of N-aminomorpholine hydrazones are presented. It is shown that the interaction of N-aminomorpholine with functionally substituted benzaldehydes and 4-pyridinaldehyde in isopropyl alcohol leads to the formation of corresponding hydrazones. The structure of the synthesized compounds was studied by 1H and 13C NMR spectroscopy methods, including the COSY (1H-1H), HMQC (1H-13C) and HMBC (1H-13C) methodologies. The values of chemical shifts, multiplicity, and integral intensity of 1H and 13C signals in one-dimensional NMR spectra were determined. The COSY (1H-1H), HMQC (1H-13C), and HMBC (1H-13C) results revealed homo- and heteronuclear interactions, confirming the structure of the studied compounds. The antiviral, cytotoxic, and antimicrobial activity of some synthesized hydrazones were investigated. It is shown that 2-((morpholinoimino)methyl)benzoic acid has a pronounced viral inhibitory property, comparable in its activity to commercial drugs Tamiflu and Remantadine. A docking study was performed using the influenza virus protein models (1930 Swine H1 Hemagglutinin and Neuraminidase of 1918 H1N1 strain). The potential binding sites that are complementary with 2-((morpholinoimino)methyl)benzoic acid were found.


Assuntos
Hidrazonas , Simulação de Acoplamento Molecular , Morfolinas , Hidrazonas/química , Hidrazonas/farmacologia , Hidrazonas/síntese química , Morfolinas/química , Morfolinas/farmacologia , Morfolinas/síntese química , Humanos , Antivirais/farmacologia , Antivirais/química , Antivirais/síntese química , Animais , Relação Estrutura-Atividade , Testes de Sensibilidade Microbiana , Estrutura Molecular
15.
Molecules ; 29(16)2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39203014

RESUMO

Boron-enhanced proton therapy has recently appeared as a promising approach to increase the efficiency of proton therapy on tumor cells, and this modality can further be improved by the use of boron nanoparticles (B NPs) as local sensitizers to achieve enhanced and targeted therapeutic outcomes. However, the mechanisms of tumor cell elimination under boron-enhanced proton therapy still require clarification. Here, we explore possible molecular mechanisms responsible for the enhancement of therapeutic outcomes under boron NP-enhanced proton therapy. Spherical B NPs with a mode size of 25 nm were prepared by methods of pulsed laser ablation in water, followed by their coating by polyethylene glycol to improve their colloidal stability in buffers. Then, we assessed the efficiency of B NPs as sensitizers of cancer cell killing under irradiation with a 160.5 MeV proton beam. Our experiments showed that the combined effect of B NPs and proton irradiation induces an increased level of superoxide anion radical generation, which leads to the depolarization of mitochondria, a drop in their membrane mitochondrial potential, and the development of apoptosis. A comprehensive gene expression analysis (via RT-PCR) confirmed increased overexpression of 52 genes (out of 87 studied) involved in the cell redox status and oxidative stress, compared to 12 genes in the cells irradiated without B NPs. Other possible mechanisms responsible for the B NPs-induced radiosensitizing effect, including one related to the generation of alpha particles, are discussed. The obtained results give a better insight into the processes involved in the boron-induced enhancement of proton therapy and enable one to optimize parameters of proton therapy in order to maximize therapeutic outcomes.


Assuntos
Apoptose , Boro , Nanopartículas , Terapia com Prótons , Humanos , Boro/química , Boro/farmacologia , Nanopartículas/química , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Linhagem Celular Tumoral , Neoplasias/radioterapia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Radiossensibilizantes/farmacologia , Radiossensibilizantes/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Estresse Oxidativo/efeitos dos fármacos
16.
FASEB J ; 36(5): e22290, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35344227

RESUMO

The actomyosin cytoskeleton serves as a key regulator of the integrity and remodeling of epithelial barriers by controlling assembly and functions of intercellular junctions and cell-matrix adhesions. Although biochemical mechanisms that regulate the activity of non-muscle myosin II (NM-II) in epithelial cells have been extensively investigated, little is known about assembly of the contractile myosin structures at the epithelial adhesion sites. UNC-45A is a cytoskeletal chaperone that is essential for proper folding of NM-II heavy chains and myofilament assembly. We found abundant expression of UNC-45A in human intestinal epithelial cell (IEC) lines and in the epithelial layer of the normal human colon. Interestingly, protein level of UNC-45A was decreased in colonic epithelium of patients with ulcerative colitis. CRISPR/Cas9-mediated knock-out of UNC-45A in HT-29cf8 and SK-CO15 IEC disrupted epithelial barrier integrity, impaired assembly of epithelial adherence and tight junctions and attenuated cell migration. Consistently, decreased UNC-45 expression increased permeability of the Drosophila gut in vivo. The mechanisms underlying barrier disruptive and anti-migratory effects of UNC-45A depletion involved disorganization of the actomyosin bundles at epithelial junctions and the migrating cell edge. Loss of UNC-45A also decreased contractile forces at apical junctions and matrix adhesions. Expression of deletion mutants revealed roles for the myosin binding domain of UNC-45A in controlling IEC junctions and motility. Our findings uncover a novel mechanism that regulates integrity and restitution of the intestinal epithelial barrier, which may be impaired during mucosal inflammation.


Assuntos
Actomiosina , Miosinas , Actomiosina/metabolismo , Células Epiteliais/metabolismo , Humanos , Junções Intercelulares/metabolismo , Mucosa Intestinal/metabolismo , Chaperonas Moleculares/metabolismo , Miosinas/metabolismo , Junções Íntimas/metabolismo
17.
Eur Radiol ; 33(9): 6582-6591, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37042979

RESUMO

OBJECTIVES: While fully supervised learning can yield high-performing segmentation models, the effort required to manually segment large training sets limits practical utility. We investigate whether data mined line annotations can facilitate brain MRI tumor segmentation model development without requiring manually segmented training data. METHODS: In this retrospective study, a tumor detection model trained using clinical line annotations mined from PACS was leveraged with unsupervised segmentation to generate pseudo-masks of enhancing tumors on T1-weighted post-contrast images (9911 image slices; 3449 adult patients). Baseline segmentation models were trained and employed within a semi-supervised learning (SSL) framework to refine the pseudo-masks. Following each self-refinement cycle, a new model was trained and tested on a held-out set of 319 manually segmented image slices (93 adult patients), with the SSL cycles continuing until Dice score coefficient (DSC) peaked. DSCs were compared using bootstrap resampling. Utilizing the best-performing models, two inference methods were compared: (1) conventional full-image segmentation, and (2) a hybrid method augmenting full-image segmentation with detection plus image patch segmentation. RESULTS: Baseline segmentation models achieved DSC of 0.768 (U-Net), 0.831 (Mask R-CNN), and 0.838 (HRNet), improving with self-refinement to 0.798, 0.871, and 0.873 (each p < 0.001), respectively. Hybrid inference outperformed full image segmentation alone: DSC 0.884 (Mask R-CNN) vs. 0.873 (HRNet), p < 0.001. CONCLUSIONS: Line annotations mined from PACS can be harnessed within an automated pipeline to produce accurate brain MRI tumor segmentation models without manually segmented training data, providing a mechanism to rapidly establish tumor segmentation capabilities across radiology modalities. KEY POINTS: • A brain MRI tumor detection model trained using clinical line measurement annotations mined from PACS was leveraged to automatically generate tumor segmentation pseudo-masks. • An iterative self-refinement process automatically improved pseudo-mask quality, with the best-performing segmentation pipeline achieving a Dice score of 0.884 on a held-out test set. • Tumor line measurement annotations generated in routine clinical radiology practice can be harnessed to develop high-performing segmentation models without manually segmented training data, providing a mechanism to rapidly establish tumor segmentation capabilities across radiology modalities.


Assuntos
Neoplasias Encefálicas , Processamento de Imagem Assistida por Computador , Adulto , Humanos , Processamento de Imagem Assistida por Computador/métodos , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Encéfalo/diagnóstico por imagem
18.
AJR Am J Roentgenol ; 221(6): 806-816, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37377358

RESUMO

BACKGROUND. Brain tumors induce language reorganization, which may influence the extent of resection in surgical planning. Direct cortical stimulation (DCS) allows definitive language mapping during awake surgery by locating areas of speech arrest (SA) surrounding the tumor. Although functional MRI (fMRI) combined with graph theory analysis can illustrate whole-brain network reorganization, few studies have corroborated these findings with DCS intraoperative mapping and clinical language performance. OBJECTIVE. We evaluated whether patients with low-grade gliomas (LGGs) without SA during DCS show increased right-hemispheric connections and better speech performance compared with patients with SA. METHODS. We retrospectively recruited 44 consecutive patients with left perisylvian LGG, preoperative language task-based fMRI, speech performance evaluation, and awake surgery with DCS. We generated language networks from ROIs corresponding to known language areas (i.e., language core) on fMRI using optimal percolation. Language core connectivity in the left and right hemispheres was quantified as fMRI laterality index (LI) and connectivity LI on the basis of fMRI activation maps and connectivity matrices. We compared fMRI LI and connectivity LI between patients with SA and without SA and used multivariable logistic regression (p < .05) to assess associations between DCS and connectivity LI, fMRI LI, tumor location, Broca area and Wernicke area involvement, prior treatments, age, handedness, sex, tumor size, and speech deficit before surgery, within 1 week after surgery, and 3-6 months after surgery. RESULTS. Patients with SA showed left-dominant connectivity; patients without SA lateralized more to the right hemisphere (p < .001). Between patients with SA and those without, fMRI LI was not significantly different. Patients without SA showed right-greater-than-left connectivity of Broca area and premotor area compared with patients with SA. Regression analysis showed significant association between no SA and right-lateralized connectivity LI (p < .001) and fewer speech deficits before (p < .001) and 1 week after (p = .02) surgery. CONCLUSION. Patients without SA had increased right-hemispheric connections and right translocation of the language core, suggesting language reorganization. Lack of interoperative SA was associated with fewer speech deficits both before and immediately after surgery. CLINICAL IMPACT. These findings support tumor-induced language plasticity as a compensatory mechanism, which may lead to fewer postsurgical deficits and allow extended resection.


Assuntos
Neoplasias Encefálicas , Humanos , Recém-Nascido , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Fala/fisiologia , Estudos Retrospectivos , Vigília , Imageamento por Ressonância Magnética , Idioma , Mapeamento Encefálico/métodos
19.
Phys Chem Chem Phys ; 25(31): 20892-20902, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37526576

RESUMO

A mixed oxide of silver and nickel AgNiO2 was obtained via co-precipitation in alkaline medium. This oxide demonstrates room temperature activity in the reaction of ethylene epoxidation with a high selectivity (up to 70%). Using the PDF method, it was found that the initial structure of AgNiO2 contains stacking faults and silver vacancies, which cause the nonstoichiometry of the oxide (Ag/Ni < 1). It has been established that on the initial surface of AgNiO2 oxide, silver state can be considered as an intermediate between Ag2O and Ag0 (i.e. Agδ+-like), while nickel is characterized by signs of a deeply oxidized state (Ni3+-like). The interaction of AgNiO2 with C2H4 at room temperature leads to the simultaneous removal of two oxygen species with Eb(O 1s) = 529.0 eV and 530.5 eV considered as nucleophilic and electrophilic oxygen states, respectively. Nucleophilic oxygen was attributed to the lattice oxygen (Ag-O-Ni), while the electrophilic species with epoxidation activity was associated with the weakly bound oxygen stabilized on the surface. According to the TPR-C2H4 data, a large number of weakly bound oxygen species were found on the pristine AgNiO2 surface. The removal of such species at room temperature didn't result in noticeable structural transformation of delafossite. As the temperature of ethylene oxidation over AgNiO2 increased, the appearance of Ag0 particles was first observed below 200 °C followed by the complete destruction of the delafossite structure at higher temperatures.

20.
Phys Chem Chem Phys ; 25(4): 2862-2874, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36625349

RESUMO

The local structure of the active sites is one of the key aspects of establishing the nature of the catalytic activity of the systems. In this work, a detailed structural investigation of the Rh-CeO2 catalysts prepared by the co-precipitation method was carried out. The application of a variety of physicochemical methods such as XRD, Raman spectroscopy, XPS, TEM, TPR-H2, and XAS revealed the presence of highly dispersed Rh3+ species in the catalysts: Rh3+ single ions and RhOx clusters. The substitution of Ce4+ ions by Rh3+ species, which provided a strong distortion of the CeO2 lattice, is shown. XAS data ensured the refinement of the Rh local structure. It was shown that single Rh3+ sites located next to each other can merge the formation of RhOx clusters with Rh local environment close to the one in Rh2O3 and CeRh2O5 oxides. The distortion of the CeO2 lattice around single and cluster rhodium species had a beneficial effect on the catalytic activity of the samples in low-temperature CO oxidation (LTO-CO). TEM, XAS, and in situ XRD data allowed establishing the structural transformations of the catalysts under Red-Ox treatments. The reduction treatment led to Rhn metallic cluster formation localized on defects of the reduced CeO2-δ. The reduced sample demonstrated efficient CO conversion at 0 °C. However, this system was not stable: its contact with air led to ceria reoxidation and partial reoxidation of Rh to highly dispersed Rh3+ species at room temperature, while heating in an oxidizing atmosphere resulted in the complete reoxidation of metallic rhodium species. The results of the work shed light on the structural aspects of the reversibility of the Rh-CeO2 catalysts based on the highly dispersed Rh3+ species under treatment in the reaction conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA